Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

News
AI News & Insights Featured Image

Grounding the Ungrounded: A Spectral-Graph Framework for Quantifying Hallucinations in Multimodal LLMs AI updates on arXiv.org

Grounding the Ungrounded: A Spectral-Graph Framework for Quantifying Hallucinations in Multimodal LLMscs.AI updates on arXiv.org arXiv:2508.19366v4 Announce Type: replace-cross
Abstract: Hallucinations in LLMs–especially in multimodal settings–undermine reliability. We present a rigorous information-geometric framework, grounded in diffusion dynamics, to quantify hallucinations in MLLMs where model outputs are embedded via spectral decompositions of multimodal graph Laplacians, and their gaps to a truth manifold define a semantic distortion metric. We derive Courant-Fischer bounds on a temperature-dependent hallucination profile and use RKHS eigenmodes to obtain modality-aware, interpretable measures that track evolution over prompts and time. This reframes hallucination as quantifiable and bounded, providing a principled basis for evaluation and mitigation.

 arXiv:2508.19366v4 Announce Type: replace-cross
Abstract: Hallucinations in LLMs–especially in multimodal settings–undermine reliability. We present a rigorous information-geometric framework, grounded in diffusion dynamics, to quantify hallucinations in MLLMs where model outputs are embedded via spectral decompositions of multimodal graph Laplacians, and their gaps to a truth manifold define a semantic distortion metric. We derive Courant-Fischer bounds on a temperature-dependent hallucination profile and use RKHS eigenmodes to obtain modality-aware, interpretable measures that track evolution over prompts and time. This reframes hallucination as quantifiable and bounded, providing a principled basis for evaluation and mitigation. Read More  

News
AI News & Insights Featured Image

Cytoplasmic Strings Analysis in Human Embryo Time-Lapse Videos using Deep Learning Framework AI updates on arXiv.org

Cytoplasmic Strings Analysis in Human Embryo Time-Lapse Videos using Deep Learning Frameworkcs.AI updates on arXiv.org arXiv:2512.09461v1 Announce Type: cross
Abstract: Infertility is a major global health issue, and while in-vitro fertilization has improved treatment outcomes, embryo selection remains a critical bottleneck. Time-lapse imaging enables continuous, non-invasive monitoring of embryo development, yet most automated assessment methods rely solely on conventional morphokinetic features and overlook emerging biomarkers. Cytoplasmic Strings, thin filamentous structures connecting the inner cell mass and trophectoderm in expanded blastocysts, have been associated with faster blastocyst formation, higher blastocyst grades, and improved viability. However, CS assessment currently depends on manual visual inspection, which is labor-intensive, subjective, and severely affected by detection and subtle visual appearance. In this work, we present, to the best of our knowledge, the first computational framework for CS analysis in human IVF embryos. We first design a human-in-the-loop annotation pipeline to curate a biologically validated CS dataset from TLI videos, comprising 13,568 frames with highly sparse CS-positive instances. Building on this dataset, we propose a two-stage deep learning framework that (i) classifies CS presence at the frame level and (ii) localizes CS regions in positive cases. To address severe imbalance and feature uncertainty, we introduce the Novel Uncertainty-aware Contractive Embedding (NUCE) loss, which couples confidence-aware reweighting with an embedding contraction term to form compact, well-separated class clusters. NUCE consistently improves F1-score across five transformer backbones, while RF-DETR-based localization achieves state-of-the-art (SOTA) detection performance for thin, low-contrast CS structures. The source code will be made publicly available at: https://github.com/HamadYA/CS_Detection.

 arXiv:2512.09461v1 Announce Type: cross
Abstract: Infertility is a major global health issue, and while in-vitro fertilization has improved treatment outcomes, embryo selection remains a critical bottleneck. Time-lapse imaging enables continuous, non-invasive monitoring of embryo development, yet most automated assessment methods rely solely on conventional morphokinetic features and overlook emerging biomarkers. Cytoplasmic Strings, thin filamentous structures connecting the inner cell mass and trophectoderm in expanded blastocysts, have been associated with faster blastocyst formation, higher blastocyst grades, and improved viability. However, CS assessment currently depends on manual visual inspection, which is labor-intensive, subjective, and severely affected by detection and subtle visual appearance. In this work, we present, to the best of our knowledge, the first computational framework for CS analysis in human IVF embryos. We first design a human-in-the-loop annotation pipeline to curate a biologically validated CS dataset from TLI videos, comprising 13,568 frames with highly sparse CS-positive instances. Building on this dataset, we propose a two-stage deep learning framework that (i) classifies CS presence at the frame level and (ii) localizes CS regions in positive cases. To address severe imbalance and feature uncertainty, we introduce the Novel Uncertainty-aware Contractive Embedding (NUCE) loss, which couples confidence-aware reweighting with an embedding contraction term to form compact, well-separated class clusters. NUCE consistently improves F1-score across five transformer backbones, while RF-DETR-based localization achieves state-of-the-art (SOTA) detection performance for thin, low-contrast CS structures. The source code will be made publicly available at: https://github.com/HamadYA/CS_Detection. Read More  

News
AI News & Insights Featured Image

Identifying Bias in Machine-generated Text Detection AI updates on arXiv.org

Identifying Bias in Machine-generated Text Detectioncs.AI updates on arXiv.org arXiv:2512.09292v1 Announce Type: cross
Abstract: The meteoric rise in text generation capability has been accompanied by parallel growth in interest in machine-generated text detection: the capability to identify whether a given text was generated using a model or written by a person. While detection models show strong performance, they have the capacity to cause significant negative impacts. We explore potential biases in English machine-generated text detection systems. We curate a dataset of student essays and assess 16 different detection systems for bias across four attributes: gender, race/ethnicity, English-language learner (ELL) status, and economic status. We evaluate these attributes using regression-based models to determine the significance and power of the effects, as well as performing subgroup analysis. We find that while biases are generally inconsistent across systems, there are several key issues: several models tend to classify disadvantaged groups as machine-generated, ELL essays are more likely to be classified as machine-generated, economically disadvantaged students’ essays are less likely to be classified as machine-generated, and non-White ELL essays are disproportionately classified as machine-generated relative to their White counterparts. Finally, we perform human annotation and find that while humans perform generally poorly at the detection task, they show no significant biases on the studied attributes.

 arXiv:2512.09292v1 Announce Type: cross
Abstract: The meteoric rise in text generation capability has been accompanied by parallel growth in interest in machine-generated text detection: the capability to identify whether a given text was generated using a model or written by a person. While detection models show strong performance, they have the capacity to cause significant negative impacts. We explore potential biases in English machine-generated text detection systems. We curate a dataset of student essays and assess 16 different detection systems for bias across four attributes: gender, race/ethnicity, English-language learner (ELL) status, and economic status. We evaluate these attributes using regression-based models to determine the significance and power of the effects, as well as performing subgroup analysis. We find that while biases are generally inconsistent across systems, there are several key issues: several models tend to classify disadvantaged groups as machine-generated, ELL essays are more likely to be classified as machine-generated, economically disadvantaged students’ essays are less likely to be classified as machine-generated, and non-White ELL essays are disproportionately classified as machine-generated relative to their White counterparts. Finally, we perform human annotation and find that while humans perform generally poorly at the detection task, they show no significant biases on the studied attributes. Read More  

News
AI News & Insights Featured Image

An End-to-end Planning Framework with Agentic LLMs and PDDL AI updates on arXiv.org

An End-to-end Planning Framework with Agentic LLMs and PDDLcs.AI updates on arXiv.org arXiv:2512.09629v1 Announce Type: new
Abstract: We present an end-to-end framework for planning supported by verifiers. An orchestrator receives a human specification written in natural language and converts it into a PDDL (Planning Domain Definition Language) model, where the domain and problem are iteratively refined by sub-modules (agents) to address common planning requirements, such as time constraints and optimality, as well as ambiguities and contradictions that may exist in the human specification. The validated domain and problem are then passed to an external planning engine to generate a plan. The orchestrator and agents are powered by Large Language Models (LLMs) and require no human intervention at any stage of the process. Finally, a module translates the final plan back into natural language to improve human readability while maintaining the correctness of each step. We demonstrate the flexibility and effectiveness of our framework across various domains and tasks, including the Google NaturalPlan benchmark and PlanBench, as well as planning problems like Blocksworld and the Tower of Hanoi (where LLMs are known to struggle even with small instances). Our framework can be integrated with any PDDL planning engine and validator (such as Fast Downward, LPG, POPF, VAL, and uVAL, which we have tested) and represents a significant step toward end-to-end planning aided by LLMs.

 arXiv:2512.09629v1 Announce Type: new
Abstract: We present an end-to-end framework for planning supported by verifiers. An orchestrator receives a human specification written in natural language and converts it into a PDDL (Planning Domain Definition Language) model, where the domain and problem are iteratively refined by sub-modules (agents) to address common planning requirements, such as time constraints and optimality, as well as ambiguities and contradictions that may exist in the human specification. The validated domain and problem are then passed to an external planning engine to generate a plan. The orchestrator and agents are powered by Large Language Models (LLMs) and require no human intervention at any stage of the process. Finally, a module translates the final plan back into natural language to improve human readability while maintaining the correctness of each step. We demonstrate the flexibility and effectiveness of our framework across various domains and tasks, including the Google NaturalPlan benchmark and PlanBench, as well as planning problems like Blocksworld and the Tower of Hanoi (where LLMs are known to struggle even with small instances). Our framework can be integrated with any PDDL planning engine and validator (such as Fast Downward, LPG, POPF, VAL, and uVAL, which we have tested) and represents a significant step toward end-to-end planning aided by LLMs. Read More  

News
AI News & Insights Featured Image

Story of Two GPUs: Characterizing the Resilience of Hopper H100 and Ampere A100 GPUs AI updates on arXiv.org

Story of Two GPUs: Characterizing the Resilience of Hopper H100 and Ampere A100 GPUscs.AI updates on arXiv.org arXiv:2503.11901v4 Announce Type: replace-cross
Abstract: This study characterizes GPU resilience in Delta, a large-scale AI system that consists of 1,056 A100 and H100 GPUs, with over 1,300 petaflops of peak throughput. We used 2.5 years of operational data (11.7 million GPU hours) on GPU errors. Our major findings include: (i) H100 GPU memory resilience is worse than A100 GPU memory, with 3.2x lower per-GPU MTBE for memory errors, (ii) The GPU memory error-recovery mechanisms on H100 GPUs are insufficient to handle the increased memory capacity, (iii) H100 GPUs demonstrate significantly improved GPU hardware resilience over A100 GPUs with respect to critical hardware components, (iv) GPU errors on both A100 and H100 GPUs frequently result in job failures due to the lack of robust recovery mechanisms at the application level, and (v) We project the impact of GPU node availability on larger-scales and find that significant overprovisioning of 5% is necessary to handle GPU failures.

 arXiv:2503.11901v4 Announce Type: replace-cross
Abstract: This study characterizes GPU resilience in Delta, a large-scale AI system that consists of 1,056 A100 and H100 GPUs, with over 1,300 petaflops of peak throughput. We used 2.5 years of operational data (11.7 million GPU hours) on GPU errors. Our major findings include: (i) H100 GPU memory resilience is worse than A100 GPU memory, with 3.2x lower per-GPU MTBE for memory errors, (ii) The GPU memory error-recovery mechanisms on H100 GPUs are insufficient to handle the increased memory capacity, (iii) H100 GPUs demonstrate significantly improved GPU hardware resilience over A100 GPUs with respect to critical hardware components, (iv) GPU errors on both A100 and H100 GPUs frequently result in job failures due to the lack of robust recovery mechanisms at the application level, and (v) We project the impact of GPU node availability on larger-scales and find that significant overprovisioning of 5% is necessary to handle GPU failures. Read More  

News
AI News & Insights Featured Image

SnapStream: Efficient Long Sequence Decoding on Dataflow Accelerators AI updates on arXiv.org

SnapStream: Efficient Long Sequence Decoding on Dataflow Acceleratorscs.AI updates on arXiv.org arXiv:2511.03092v5 Announce Type: replace
Abstract: The proliferation of 100B+ parameter Large Language Models (LLMs) with 100k+ context length support have resulted in increasing demands for on-chip memory to support large KV caches. Techniques such as StreamingLLM and SnapKV demonstrate how to control KV cache size while maintaining model accuracy. Yet, these techniques are not commonly used within industrial deployments using frameworks like vLLM or SGLang. The reason is twofold: on one hand, the static graphs and continuous batching methodology employed by these frameworks make it difficult to admit modifications to the standard multi-head attention algorithm, while on the other hand, the accuracy implications of such techniques on modern instruction-following and reasoning models are not well understood, obfuscating the need for implementing these techniques. In this paper, we explore these accuracy implications on Llama-3.1-8B-Instruct and DeepSeek-R1, and develop SnapStream, a KV cache compression method that can be deployed at scale. We demonstrate the efficacy of SnapStream in a 16-way tensor-parallel deployment of DeepSeek-671B on SambaNova SN40L accelerators running at 128k context length and up to 1832 tokens per second in a real production setting. SnapStream enables $4times$ improved on-chip memory usage and introduces minimal accuracy degradation on LongBench-v2, AIME24 and LiveCodeBench. To the best of our knowledge, this is the first implementation of sparse KV attention techniques deployed in a production inference system with static graphs and continuous batching.

 arXiv:2511.03092v5 Announce Type: replace
Abstract: The proliferation of 100B+ parameter Large Language Models (LLMs) with 100k+ context length support have resulted in increasing demands for on-chip memory to support large KV caches. Techniques such as StreamingLLM and SnapKV demonstrate how to control KV cache size while maintaining model accuracy. Yet, these techniques are not commonly used within industrial deployments using frameworks like vLLM or SGLang. The reason is twofold: on one hand, the static graphs and continuous batching methodology employed by these frameworks make it difficult to admit modifications to the standard multi-head attention algorithm, while on the other hand, the accuracy implications of such techniques on modern instruction-following and reasoning models are not well understood, obfuscating the need for implementing these techniques. In this paper, we explore these accuracy implications on Llama-3.1-8B-Instruct and DeepSeek-R1, and develop SnapStream, a KV cache compression method that can be deployed at scale. We demonstrate the efficacy of SnapStream in a 16-way tensor-parallel deployment of DeepSeek-671B on SambaNova SN40L accelerators running at 128k context length and up to 1832 tokens per second in a real production setting. SnapStream enables $4times$ improved on-chip memory usage and introduces minimal accuracy degradation on LongBench-v2, AIME24 and LiveCodeBench. To the best of our knowledge, this is the first implementation of sparse KV attention techniques deployed in a production inference system with static graphs and continuous batching. Read More  

News
AI News & Insights Featured Image

Enhanced Sentiment Interpretation via a Lexicon-Fuzzy-Transformer Framework AI updates on arXiv.org

Enhanced Sentiment Interpretation via a Lexicon-Fuzzy-Transformer Frameworkcs.AI updates on arXiv.org arXiv:2510.15843v2 Announce Type: replace-cross
Abstract: Accurately detecting sentiment polarity and intensity in product reviews and social media posts remains challenging due to informal and domain-specific language. To address this, we propose a novel hybrid lexicon-fuzzy-transformer framework that combines rule-based heuristics, contextual deep learning, and fuzzy logic to generate continuous sentiment scores reflecting both polarity and strength. The pipeline begins with VADER-based initial sentiment estimations, which are refined through a two-stage adjustment process. This involves leveraging confidence scores from DistilBERT, a lightweight transformer and applying fuzzy logic principles to mitigate excessive neutrality bias and enhance granularity. A custom fuzzy inference system then maps the refined scores onto a 0 to 1 continuum, producing expert)like judgments. The framework is rigorously evaluated on four domain-specific datasets. food delivery, e-commerce, tourism, and fashion. Results show improved alignment with user ratings, better identification of sentiment extremes, and reduced misclassifications. Both quantitative metrics (distributional alignment, confusion matrices) and qualitative insights (case studies, runtime analysis) affirm the models robustness and efficiency. This work demonstrates the value of integrating symbolic reasoning with neural models for interpretable, finegrained sentiment analysis in linguistically dynamic domains.

 arXiv:2510.15843v2 Announce Type: replace-cross
Abstract: Accurately detecting sentiment polarity and intensity in product reviews and social media posts remains challenging due to informal and domain-specific language. To address this, we propose a novel hybrid lexicon-fuzzy-transformer framework that combines rule-based heuristics, contextual deep learning, and fuzzy logic to generate continuous sentiment scores reflecting both polarity and strength. The pipeline begins with VADER-based initial sentiment estimations, which are refined through a two-stage adjustment process. This involves leveraging confidence scores from DistilBERT, a lightweight transformer and applying fuzzy logic principles to mitigate excessive neutrality bias and enhance granularity. A custom fuzzy inference system then maps the refined scores onto a 0 to 1 continuum, producing expert)like judgments. The framework is rigorously evaluated on four domain-specific datasets. food delivery, e-commerce, tourism, and fashion. Results show improved alignment with user ratings, better identification of sentiment extremes, and reduced misclassifications. Both quantitative metrics (distributional alignment, confusion matrices) and qualitative insights (case studies, runtime analysis) affirm the models robustness and efficiency. This work demonstrates the value of integrating symbolic reasoning with neural models for interpretable, finegrained sentiment analysis in linguistically dynamic domains. Read More  

News
AI News & Insights Featured Image

Integrated Pipeline for Coronary Angiography With Automated Lesion Profiling, Virtual Stenting, and 100-Vessel FFR Validation AI updates on arXiv.org

Integrated Pipeline for Coronary Angiography With Automated Lesion Profiling, Virtual Stenting, and 100-Vessel FFR Validationcs.AI updates on arXiv.org arXiv:2512.09134v1 Announce Type: cross
Abstract: Coronary angiography is the main tool for assessing coronary artery disease, but visual grading of stenosis is variable and only moderately related to ischaemia. Wire based fractional flow reserve (FFR) improves lesion selection but is not used systematically. Angiography derived indices such as quantitative flow ratio (QFR) offer wire free physiology, yet many tools are workflow intensive and separate from automated anatomy analysis and virtual PCI planning. We developed AngioAI-QFR, an end to end angiography only pipeline combining deep learning stenosis detection, lumen segmentation, centreline and diameter extraction, per millimetre Relative Flow Capacity profiling, and virtual stenting with automatic recomputation of angiography derived QFR. The system was evaluated in 100 consecutive vessels with invasive FFR as reference. Primary endpoints were agreement with FFR (correlation, mean absolute error) and diagnostic performance for FFR <= 0.80. On held out frames, stenosis detection achieved precision 0.97 and lumen segmentation Dice 0.78. Across 100 vessels, AngioAI-QFR correlated strongly with FFR (r = 0.89, MAE 0.045). The AUC for detecting FFR <= 0.80 was 0.93, with sensitivity 0.88 and specificity 0.86. The pipeline completed fully automatically in 93 percent of vessels, with median time to result 41 s. RFC profiling distinguished focal from diffuse capacity loss, and virtual stenting predicted larger QFR gain in focal than in diffuse disease. AngioAI-QFR provides a practical, near real time pipeline that unifies computer vision, functional profiling, and virtual PCI with automated angiography derived physiology.

 arXiv:2512.09134v1 Announce Type: cross
Abstract: Coronary angiography is the main tool for assessing coronary artery disease, but visual grading of stenosis is variable and only moderately related to ischaemia. Wire based fractional flow reserve (FFR) improves lesion selection but is not used systematically. Angiography derived indices such as quantitative flow ratio (QFR) offer wire free physiology, yet many tools are workflow intensive and separate from automated anatomy analysis and virtual PCI planning. We developed AngioAI-QFR, an end to end angiography only pipeline combining deep learning stenosis detection, lumen segmentation, centreline and diameter extraction, per millimetre Relative Flow Capacity profiling, and virtual stenting with automatic recomputation of angiography derived QFR. The system was evaluated in 100 consecutive vessels with invasive FFR as reference. Primary endpoints were agreement with FFR (correlation, mean absolute error) and diagnostic performance for FFR <= 0.80. On held out frames, stenosis detection achieved precision 0.97 and lumen segmentation Dice 0.78. Across 100 vessels, AngioAI-QFR correlated strongly with FFR (r = 0.89, MAE 0.045). The AUC for detecting FFR <= 0.80 was 0.93, with sensitivity 0.88 and specificity 0.86. The pipeline completed fully automatically in 93 percent of vessels, with median time to result 41 s. RFC profiling distinguished focal from diffuse capacity loss, and virtual stenting predicted larger QFR gain in focal than in diffuse disease. AngioAI-QFR provides a practical, near real time pipeline that unifies computer vision, functional profiling, and virtual PCI with automated angiography derived physiology. Read More  

Security News
keys

Active Attacks Exploit Gladinet’s Hard-Coded Keys for Unauthorized Access and Code Execution The Hacker Newsinfo@thehackernews.com (The Hacker News)

Huntress is warning of a new actively exploited vulnerability in Gladinet’s CentreStack and Triofox products stemming from the use of hard-coded cryptographic keys that have affected nine organizations so far. “Threat actors can potentially abuse this as a way to access the web.config file, opening the door for deserialization and remote code execution,” security researcher […]