How to Build an AI-Powered Weather ETL Pipeline with Databricks and GPT-4o: From API To DashboardTowards Data Science A step-by-step guide from weather API ETL to dashboard on Databricks
The post How to Build an AI-Powered Weather ETL Pipeline with Databricks and GPT-4o: From API To Dashboard appeared first on Towards Data Science.
A step-by-step guide from weather API ETL to dashboard on Databricks
The post How to Build an AI-Powered Weather ETL Pipeline with Databricks and GPT-4o: From API To Dashboard appeared first on Towards Data Science. Read More
A Coding Implementation on Building Self-Organizing Zettelkasten Knowledge Graphs and Sleep-Consolidation MechanismsMarkTechPost In this tutorial, we dive into the cutting edge of Agentic AI by building a “Zettelkasten” memory system, a “living” architecture that organizes information much like the human brain. We move beyond standard retrieval methods to construct a dynamic knowledge graph where an agent autonomously decomposes inputs into atomic facts, links them semantically, and even
The post A Coding Implementation on Building Self-Organizing Zettelkasten Knowledge Graphs and Sleep-Consolidation Mechanisms appeared first on MarkTechPost.
In this tutorial, we dive into the cutting edge of Agentic AI by building a “Zettelkasten” memory system, a “living” architecture that organizes information much like the human brain. We move beyond standard retrieval methods to construct a dynamic knowledge graph where an agent autonomously decomposes inputs into atomic facts, links them semantically, and even
The post A Coding Implementation on Building Self-Organizing Zettelkasten Knowledge Graphs and Sleep-Consolidation Mechanisms appeared first on MarkTechPost. Read More
A Physics Informed Neural Network For Deriving MHD State Vectors From Global Active Regions Observationscs.AI updates on arXiv.org arXiv:2512.20747v1 Announce Type: cross
Abstract: Solar active regions (ARs) do not appear randomly but cluster along longitudinally warped toroidal bands (‘toroids’) that encode information about magnetic structures in the tachocline, where global-scale organization likely originates. Global MagnetoHydroDynamic Shallow-Water Tachocline (MHD-SWT) models have shown potential to simulate such toroids, matching observations qualitatively. For week-scale early prediction of flare-producing AR emergence, forward-integration of these toroids is necessary. This requires model initialization with a dynamically self-consistent MHD state-vector that includes magnetic, flow fields, and shell-thickness variations. However, synoptic magnetograms provide only geometric shape of toroids, not the state-vector needed to initialize MHD-SWT models. To address this challenging task, we develop PINNBARDS, a novel Physics-Informed Neural Network (PINN)-Based AR Distribution Simulator, that uses observational toroids and MHD-SWT equations to derive initial state-vector. Using Feb-14-2024 SDO/HMI synoptic map, we show that PINN converges to physically consistent, predominantly antisymmetric toroids, matching observed ones. Although surface data provides north and south toroids’ central latitudes, and their latitudinal widths, they cannot determine tachocline field strengths, connected to AR emergence. We explore here solutions across a broad parameter range, finding hydrodynamically-dominated structures for weak fields (~2 kG) and overly rigid behavior for strong fields (~100 kG). We obtain best agreement with observations for 20-30 kG toroidal fields, and ~10 degree bandwidth, consistent with low-order longitudinal mode excitation. To our knowledge, PINNBARDS serves as the first method for reconstructing state-vectors for hidden tachocline magnetic structures from surface patterns; potentially leading to weeks ahead prediction of flare-producing AR-emergence.
arXiv:2512.20747v1 Announce Type: cross
Abstract: Solar active regions (ARs) do not appear randomly but cluster along longitudinally warped toroidal bands (‘toroids’) that encode information about magnetic structures in the tachocline, where global-scale organization likely originates. Global MagnetoHydroDynamic Shallow-Water Tachocline (MHD-SWT) models have shown potential to simulate such toroids, matching observations qualitatively. For week-scale early prediction of flare-producing AR emergence, forward-integration of these toroids is necessary. This requires model initialization with a dynamically self-consistent MHD state-vector that includes magnetic, flow fields, and shell-thickness variations. However, synoptic magnetograms provide only geometric shape of toroids, not the state-vector needed to initialize MHD-SWT models. To address this challenging task, we develop PINNBARDS, a novel Physics-Informed Neural Network (PINN)-Based AR Distribution Simulator, that uses observational toroids and MHD-SWT equations to derive initial state-vector. Using Feb-14-2024 SDO/HMI synoptic map, we show that PINN converges to physically consistent, predominantly antisymmetric toroids, matching observed ones. Although surface data provides north and south toroids’ central latitudes, and their latitudinal widths, they cannot determine tachocline field strengths, connected to AR emergence. We explore here solutions across a broad parameter range, finding hydrodynamically-dominated structures for weak fields (~2 kG) and overly rigid behavior for strong fields (~100 kG). We obtain best agreement with observations for 20-30 kG toroidal fields, and ~10 degree bandwidth, consistent with low-order longitudinal mode excitation. To our knowledge, PINNBARDS serves as the first method for reconstructing state-vectors for hidden tachocline magnetic structures from surface patterns; potentially leading to weeks ahead prediction of flare-producing AR-emergence. Read More
MegaRAG: Multimodal Knowledge Graph-Based Retrieval Augmented Generationcs.AI updates on arXiv.org arXiv:2512.20626v1 Announce Type: new
Abstract: Retrieval-augmented generation (RAG) enables large language models (LLMs) to dynamically access external information, which is powerful for answering questions over previously unseen documents. Nonetheless, they struggle with high-level conceptual understanding and holistic comprehension due to limited context windows, which constrain their ability to perform deep reasoning over long-form, domain-specific content such as full-length books. To solve this problem, knowledge graphs (KGs) have been leveraged to provide entity-centric structure and hierarchical summaries, offering more structured support for reasoning. However, existing KG-based RAG solutions remain restricted to text-only inputs and fail to leverage the complementary insights provided by other modalities such as vision. On the other hand, reasoning from visual documents requires textual, visual, and spatial cues into structured, hierarchical concepts. To address this issue, we introduce a multimodal knowledge graph-based RAG that enables cross-modal reasoning for better content understanding. Our method incorporates visual cues into the construction of knowledge graphs, the retrieval phase, and the answer generation process. Experimental results across both global and fine-grained question answering tasks show that our approach consistently outperforms existing RAG-based approaches on both textual and multimodal corpora.
arXiv:2512.20626v1 Announce Type: new
Abstract: Retrieval-augmented generation (RAG) enables large language models (LLMs) to dynamically access external information, which is powerful for answering questions over previously unseen documents. Nonetheless, they struggle with high-level conceptual understanding and holistic comprehension due to limited context windows, which constrain their ability to perform deep reasoning over long-form, domain-specific content such as full-length books. To solve this problem, knowledge graphs (KGs) have been leveraged to provide entity-centric structure and hierarchical summaries, offering more structured support for reasoning. However, existing KG-based RAG solutions remain restricted to text-only inputs and fail to leverage the complementary insights provided by other modalities such as vision. On the other hand, reasoning from visual documents requires textual, visual, and spatial cues into structured, hierarchical concepts. To address this issue, we introduce a multimodal knowledge graph-based RAG that enables cross-modal reasoning for better content understanding. Our method incorporates visual cues into the construction of knowledge graphs, the retrieval phase, and the answer generation process. Experimental results across both global and fine-grained question answering tasks show that our approach consistently outperforms existing RAG-based approaches on both textual and multimodal corpora. Read More
Proceedings of the 20th International Conference on Knowledge, Information and Creativity Support Systems (KICSS 2025)cs.AI updates on arXiv.org arXiv:2512.20628v1 Announce Type: new
Abstract: This volume presents the proceedings of the 20th International Conference on Knowledge, Information and Creativity Support Systems (KICSS 2025), held in Nagaoka, Japan, on December 3-5, 2025. The conference, organized in cooperation with the IEICE Proceedings Series, provides a multidisciplinary forum for researchers in artificial intelligence, knowledge engineering, human-computer interaction, and creativity support systems. The proceedings include peer-reviewed papers accepted through a double-blind review process. Selected papers have been recommended for publication in IEICE Transactions on Information and Systems after an additional peer-review process.
arXiv:2512.20628v1 Announce Type: new
Abstract: This volume presents the proceedings of the 20th International Conference on Knowledge, Information and Creativity Support Systems (KICSS 2025), held in Nagaoka, Japan, on December 3-5, 2025. The conference, organized in cooperation with the IEICE Proceedings Series, provides a multidisciplinary forum for researchers in artificial intelligence, knowledge engineering, human-computer interaction, and creativity support systems. The proceedings include peer-reviewed papers accepted through a double-blind review process. Selected papers have been recommended for publication in IEICE Transactions on Information and Systems after an additional peer-review process. Read More
STLDM: Spatio-Temporal Latent Diffusion Model for Precipitation Nowcastingcs.AI updates on arXiv.org arXiv:2512.21118v1 Announce Type: cross
Abstract: Precipitation nowcasting is a critical spatio-temporal prediction task for society to prevent severe damage owing to extreme weather events. Despite the advances in this field, the complex and stochastic nature of this task still poses challenges to existing approaches. Specifically, deterministic models tend to produce blurry predictions while generative models often struggle with poor accuracy. In this paper, we present a simple yet effective model architecture termed STLDM, a diffusion-based model that learns the latent representation from end to end alongside both the Variational Autoencoder and the conditioning network. STLDM decomposes this task into two stages: a deterministic forecasting stage handled by the conditioning network, and an enhancement stage performed by the latent diffusion model. Experimental results on multiple radar datasets demonstrate that STLDM achieves superior performance compared to the state of the art, while also improving inference efficiency. The code is available in https://github.com/sqfoo/stldm_official.
arXiv:2512.21118v1 Announce Type: cross
Abstract: Precipitation nowcasting is a critical spatio-temporal prediction task for society to prevent severe damage owing to extreme weather events. Despite the advances in this field, the complex and stochastic nature of this task still poses challenges to existing approaches. Specifically, deterministic models tend to produce blurry predictions while generative models often struggle with poor accuracy. In this paper, we present a simple yet effective model architecture termed STLDM, a diffusion-based model that learns the latent representation from end to end alongside both the Variational Autoencoder and the conditioning network. STLDM decomposes this task into two stages: a deterministic forecasting stage handled by the conditioning network, and an enhancement stage performed by the latent diffusion model. Experimental results on multiple radar datasets demonstrate that STLDM achieves superior performance compared to the state of the art, while also improving inference efficiency. The code is available in https://github.com/sqfoo/stldm_official. Read More
Evolving Security in LLMs: A Study of Jailbreak Attacks and Defensescs.AI updates on arXiv.org arXiv:2504.02080v2 Announce Type: replace-cross
Abstract: Large Language Models (LLMs) are increasingly popular, powering a wide range of applications. Their widespread use has sparked concerns, especially through jailbreak attacks that bypass safety measures to produce harmful content.
In this paper, we present a comprehensive security analysis of large language models (LLMs), addressing critical research questions on the evolution and determinants of model safety.
Specifically, we begin by identifying the most effective techniques for detecting jailbreak attacks. Next, we investigate whether newer versions of LLMs offer improved security compared to their predecessors. We also assess the impact of model size on overall security and explore the potential benefits of integrating multiple defense strategies to enhance the security.
Our study evaluates both open-source (e.g., LLaMA and Mistral) and closed-source models (e.g., GPT-4) by employing four state-of-the-art attack techniques and assessing the efficacy of three new defensive approaches.
arXiv:2504.02080v2 Announce Type: replace-cross
Abstract: Large Language Models (LLMs) are increasingly popular, powering a wide range of applications. Their widespread use has sparked concerns, especially through jailbreak attacks that bypass safety measures to produce harmful content.
In this paper, we present a comprehensive security analysis of large language models (LLMs), addressing critical research questions on the evolution and determinants of model safety.
Specifically, we begin by identifying the most effective techniques for detecting jailbreak attacks. Next, we investigate whether newer versions of LLMs offer improved security compared to their predecessors. We also assess the impact of model size on overall security and explore the potential benefits of integrating multiple defense strategies to enhance the security.
Our study evaluates both open-source (e.g., LLaMA and Mistral) and closed-source models (e.g., GPT-4) by employing four state-of-the-art attack techniques and assessing the efficacy of three new defensive approaches. Read More
AIAuditTrack: A Framework for AI Security systemcs.AI updates on arXiv.org arXiv:2512.20649v1 Announce Type: new
Abstract: The rapid expansion of AI-driven applications powered by large language models has led to a surge in AI interaction data, raising urgent challenges in security, accountability, and risk traceability. This paper presents AiAuditTrack (AAT), a blockchain-based framework for AI usage traffic recording and governance. AAT leverages decentralized identity (DID) and verifiable credentials (VC) to establish trusted and identifiable AI entities, and records inter-entity interaction trajectories on-chain to enable cross-system supervision and auditing. AI entities are modeled as nodes in a dynamic interaction graph, where edges represent time-specific behavioral trajectories. Based on this model, a risk diffusion algorithm is proposed to trace the origin of risky behaviors and propagate early warnings across involved entities. System performance is evaluated using blockchain Transactions Per Second (TPS) metrics, demonstrating the feasibility and stability of AAT under large-scale interaction recording. AAT provides a scalable and verifiable solution for AI auditing, risk management, and responsibility attribution in complex multi-agent environments.
arXiv:2512.20649v1 Announce Type: new
Abstract: The rapid expansion of AI-driven applications powered by large language models has led to a surge in AI interaction data, raising urgent challenges in security, accountability, and risk traceability. This paper presents AiAuditTrack (AAT), a blockchain-based framework for AI usage traffic recording and governance. AAT leverages decentralized identity (DID) and verifiable credentials (VC) to establish trusted and identifiable AI entities, and records inter-entity interaction trajectories on-chain to enable cross-system supervision and auditing. AI entities are modeled as nodes in a dynamic interaction graph, where edges represent time-specific behavioral trajectories. Based on this model, a risk diffusion algorithm is proposed to trace the origin of risky behaviors and propagate early warnings across involved entities. System performance is evaluated using blockchain Transactions Per Second (TPS) metrics, demonstrating the feasibility and stability of AAT under large-scale interaction recording. AAT provides a scalable and verifiable solution for AI auditing, risk management, and responsibility attribution in complex multi-agent environments. Read More
LLaDA2.0: Scaling Up Diffusion Language Models to 100Bcs.AI updates on arXiv.org arXiv:2512.15745v2 Announce Type: replace-cross
Abstract: This paper presents LLaDA2.0 — a tuple of discrete diffusion large language models (dLLM) scaling up to 100B total parameters through systematic conversion from auto-regressive (AR) models — establishing a new paradigm for frontier-scale deployment. Instead of costly training from scratch, LLaDA2.0 upholds knowledge inheritance, progressive adaption and efficiency-aware design principle, and seamless converts a pre-trained AR model into dLLM with a novel 3-phase block-level WSD based training scheme: progressive increasing block-size in block diffusion (warm-up), large-scale full-sequence diffusion (stable) and reverting back to compact-size block diffusion (decay). Along with post-training alignment with SFT and DPO, we obtain LLaDA2.0-mini (16B) and LLaDA2.0-flash (100B), two instruction-tuned Mixture-of-Experts (MoE) variants optimized for practical deployment. By preserving the advantages of parallel decoding, these models deliver superior performance and efficiency at the frontier scale. Both models were open-sourced.
arXiv:2512.15745v2 Announce Type: replace-cross
Abstract: This paper presents LLaDA2.0 — a tuple of discrete diffusion large language models (dLLM) scaling up to 100B total parameters through systematic conversion from auto-regressive (AR) models — establishing a new paradigm for frontier-scale deployment. Instead of costly training from scratch, LLaDA2.0 upholds knowledge inheritance, progressive adaption and efficiency-aware design principle, and seamless converts a pre-trained AR model into dLLM with a novel 3-phase block-level WSD based training scheme: progressive increasing block-size in block diffusion (warm-up), large-scale full-sequence diffusion (stable) and reverting back to compact-size block diffusion (decay). Along with post-training alignment with SFT and DPO, we obtain LLaDA2.0-mini (16B) and LLaDA2.0-flash (100B), two instruction-tuned Mixture-of-Experts (MoE) variants optimized for practical deployment. By preserving the advantages of parallel decoding, these models deliver superior performance and efficiency at the frontier scale. Both models were open-sourced. Read More
Reinforcement Learning with Verifiable yet Noisy Rewards under Imperfect Verifierscs.AI updates on arXiv.org arXiv:2510.00915v3 Announce Type: replace-cross
Abstract: Reinforcement Learning with Verifiable Rewards (RLVR) replaces costly human labeling with automated verifiers. To reduce verifier hacking, many RLVR systems binarize rewards to ${0,1}$, but imperfect verifiers inevitably introduce emph{false negatives} (rejecting correct answers) and emph{false positives} (accepting incorrect ones). We formalize verifier unreliability as a stochastic reward channel with asymmetric noise rates $rho_0$ and $rho_1$ — the FP rate and the FN rate, respectively. From this abstraction we derive two lightweight corrections: (i) a emph{backward} correction that yields an unbiased surrogate reward and thus an unbiased policy-gradient estimator in expectation, and (ii) a emph{forward} correction that reweights score-function terms so the expected update aligns with the clean gradient direction and requires only the FN rate. We implement both as lightweight hooks in a group relative policy optimization pipeline, both corrections improve RLVR for math reasoning under synthetic and real verifier noise, with the forward variant being more stable under heavier noise. Finally, an appeals mechanism with a lightweight LLM verifier estimates the FN rate online and further improves performance.
arXiv:2510.00915v3 Announce Type: replace-cross
Abstract: Reinforcement Learning with Verifiable Rewards (RLVR) replaces costly human labeling with automated verifiers. To reduce verifier hacking, many RLVR systems binarize rewards to ${0,1}$, but imperfect verifiers inevitably introduce emph{false negatives} (rejecting correct answers) and emph{false positives} (accepting incorrect ones). We formalize verifier unreliability as a stochastic reward channel with asymmetric noise rates $rho_0$ and $rho_1$ — the FP rate and the FN rate, respectively. From this abstraction we derive two lightweight corrections: (i) a emph{backward} correction that yields an unbiased surrogate reward and thus an unbiased policy-gradient estimator in expectation, and (ii) a emph{forward} correction that reweights score-function terms so the expected update aligns with the clean gradient direction and requires only the FN rate. We implement both as lightweight hooks in a group relative policy optimization pipeline, both corrections improve RLVR for math reasoning under synthetic and real verifier noise, with the forward variant being more stable under heavier noise. Finally, an appeals mechanism with a lightweight LLM verifier estimates the FN rate online and further improves performance. Read More