Seemingly harmless game mods can hide infostealer malware that quietly steals identities. Flare shows how Roblox mods can turn a home PC infection into corporate compromise. […] Read More
Google has introduced stronger Android authentication safeguards and enhanced recovery tools to make smartphones more challenging targets for thieves. […] Read More
The Aisuru/Kimwolf botnet launched a new massive distributed denial of service (DDoS) attack in December 2025, peaking at 31.4 Tbps and 200 million requests per second. […] Read More
A study by OMICRON has revealed widespread cybersecurity gaps in the operational technology (OT) networks of substations, power plants, and control centers worldwide. Drawing on data from more than 100 installations, the analysis highlights recurring technical, organizational, and functional issues that leave critical energy infrastructure vulnerable to cyber threats. The findings are based on Read More
Microsoft plans to introduce a call reporting feature in Teams by mid-March, allowing users to flag suspicious or unwanted calls as potential scams or phishing attempts. […] Read More
Google DeepMind Unveils AlphaGenome: A Unified Sequence-to-Function Model Using Hybrid Transformers and U-Nets to Decode the Human GenomeMarkTechPost Google DeepMind is expanding its biological toolkit beyond the world of protein folding. After the success of AlphaFold, the Google’s research team has introduced AlphaGenome. This is a unified deep learning model designed for sequence to function genomics. This represents a major shift in how we model the human genome. AlphaGenome does not treat DNA
The post Google DeepMind Unveils AlphaGenome: A Unified Sequence-to-Function Model Using Hybrid Transformers and U-Nets to Decode the Human Genome appeared first on MarkTechPost.
Google DeepMind is expanding its biological toolkit beyond the world of protein folding. After the success of AlphaFold, the Google’s research team has introduced AlphaGenome. This is a unified deep learning model designed for sequence to function genomics. This represents a major shift in how we model the human genome. AlphaGenome does not treat DNA
The post Google DeepMind Unveils AlphaGenome: A Unified Sequence-to-Function Model Using Hybrid Transformers and U-Nets to Decode the Human Genome appeared first on MarkTechPost. Read More
Understanding Post-Training Structural Changes in Large Language Modelscs.AI updates on arXiv.org arXiv:2509.17866v3 Announce Type: replace-cross
Abstract: Post-training fundamentally alters the behavior of large language models (LLMs), yet its impact on the internal parameter space remains poorly understood. In this work, we conduct a systematic singular value decomposition (SVD) analysis of principal linear layers in pretrained LLMs, focusing on two widely adopted post-training methods: instruction tuning and long-chain-of-thought (Long-CoT) distillation. Our analysis reveals two unexpected and robust structural changes: (1) a near-uniform geometric scaling of singular values across layers; and (2) highly consistent orthogonal transformations are applied to the left and right singular vectors of each matrix. Based on these findings, We propose a simple yet effective framework to describe the coordinated dynamics of parameters in LLMs, which elucidates why post-training inherently relies on the foundational capabilities developed during pre-training. Further experiments demonstrate that singular value scaling underpins the temperature-controlled regulatory mechanisms of post-training, while the coordinated rotation of singular vectors encodes the essential semantic alignment. These results challenge the prevailing view of the parameter space in large models as a black box, uncovering the first clear regularities in how parameters evolve during training, and providing a new perspective for deeper investigation into model parameter changes.
arXiv:2509.17866v3 Announce Type: replace-cross
Abstract: Post-training fundamentally alters the behavior of large language models (LLMs), yet its impact on the internal parameter space remains poorly understood. In this work, we conduct a systematic singular value decomposition (SVD) analysis of principal linear layers in pretrained LLMs, focusing on two widely adopted post-training methods: instruction tuning and long-chain-of-thought (Long-CoT) distillation. Our analysis reveals two unexpected and robust structural changes: (1) a near-uniform geometric scaling of singular values across layers; and (2) highly consistent orthogonal transformations are applied to the left and right singular vectors of each matrix. Based on these findings, We propose a simple yet effective framework to describe the coordinated dynamics of parameters in LLMs, which elucidates why post-training inherently relies on the foundational capabilities developed during pre-training. Further experiments demonstrate that singular value scaling underpins the temperature-controlled regulatory mechanisms of post-training, while the coordinated rotation of singular vectors encodes the essential semantic alignment. These results challenge the prevailing view of the parameter space in large models as a black box, uncovering the first clear regularities in how parameters evolve during training, and providing a new perspective for deeper investigation into model parameter changes. Read More
DeepBooTS: Dual-Stream Residual Boosting for Drift-Resilient Time-Series Forecastingcs.AI updates on arXiv.org arXiv:2511.06893v2 Announce Type: replace-cross
Abstract: Time-Series (TS) exhibits pronounced non-stationarity. Consequently, most forecasting methods display compromised robustness to concept drift, despite the prevalent application of instance normalization. We tackle this challenge by first analysing concept drift through a bias-variance lens and proving that weighted ensemble reduces variance without increasing bias. These insights motivate DeepBooTS, a novel end-to-end dual-stream residual-decreasing boosting method that progressively reconstructs the intrinsic signal. In our design, each block of a deep model becomes an ensemble of learners with an auxiliary output branch forming a highway to the final prediction. The block-wise outputs correct the residuals of previous blocks, leading to a learning-driven decomposition of both inputs and targets. This method enhances versatility and interpretability while substantially improving robustness to concept drift. Extensive experiments, including those on large-scale datasets, show that the proposed method outperforms existing methods by a large margin, yielding an average performance improvement of 15.8% across various datasets, establishing a new benchmark for TS forecasting.
arXiv:2511.06893v2 Announce Type: replace-cross
Abstract: Time-Series (TS) exhibits pronounced non-stationarity. Consequently, most forecasting methods display compromised robustness to concept drift, despite the prevalent application of instance normalization. We tackle this challenge by first analysing concept drift through a bias-variance lens and proving that weighted ensemble reduces variance without increasing bias. These insights motivate DeepBooTS, a novel end-to-end dual-stream residual-decreasing boosting method that progressively reconstructs the intrinsic signal. In our design, each block of a deep model becomes an ensemble of learners with an auxiliary output branch forming a highway to the final prediction. The block-wise outputs correct the residuals of previous blocks, leading to a learning-driven decomposition of both inputs and targets. This method enhances versatility and interpretability while substantially improving robustness to concept drift. Extensive experiments, including those on large-scale datasets, show that the proposed method outperforms existing methods by a large margin, yielding an average performance improvement of 15.8% across various datasets, establishing a new benchmark for TS forecasting. Read More
Embodied AI with Foundation Models for Mobile Service Robots: A Systematic Reviewcs.AI updates on arXiv.org arXiv:2505.20503v2 Announce Type: replace-cross
Abstract: Rapid advancements in foundation models, including Large Language Models, Vision-Language Models, Multimodal Large Language Models, and Vision-Language-Action Models, have opened new avenues for embodied AI in mobile service robotics. By combining foundation models with the principles of embodied AI, where intelligent systems perceive, reason, and act through physical interaction, mobile service robots can achieve more flexible understanding, adaptive behavior, and robust task execution in dynamic real-world environments. Despite this progress, embodied AI for mobile service robots continues to face fundamental challenges related to the translation of natural language instructions into executable robot actions, multimodal perception in human-centered environments, uncertainty estimation for safe decision-making, and computational constraints for real-time onboard deployment. In this paper, we present the first systematic review focused specifically on the integration of foundation models in mobile service robotics. We analyze how recent advances in foundation models address these core challenges through language-conditioned control, multimodal sensor fusion, uncertainty-aware reasoning, and efficient model scaling. We further examine real-world applications in domestic assistance, healthcare, and service automation, highlighting how foundation models enable context-aware, socially responsive, and generalizable robot behaviors. Beyond technical considerations, we discuss ethical, societal, and human-interaction implications associated with deploying foundation model-enabled service robots in human environments. Finally, we outline future research directions emphasizing reliability and lifelong adaptation, privacy-aware and resource-constrained deployment, and governance and human-in-the-loop frameworks required for safe, scalable, and trustworthy mobile service robotics.
arXiv:2505.20503v2 Announce Type: replace-cross
Abstract: Rapid advancements in foundation models, including Large Language Models, Vision-Language Models, Multimodal Large Language Models, and Vision-Language-Action Models, have opened new avenues for embodied AI in mobile service robotics. By combining foundation models with the principles of embodied AI, where intelligent systems perceive, reason, and act through physical interaction, mobile service robots can achieve more flexible understanding, adaptive behavior, and robust task execution in dynamic real-world environments. Despite this progress, embodied AI for mobile service robots continues to face fundamental challenges related to the translation of natural language instructions into executable robot actions, multimodal perception in human-centered environments, uncertainty estimation for safe decision-making, and computational constraints for real-time onboard deployment. In this paper, we present the first systematic review focused specifically on the integration of foundation models in mobile service robotics. We analyze how recent advances in foundation models address these core challenges through language-conditioned control, multimodal sensor fusion, uncertainty-aware reasoning, and efficient model scaling. We further examine real-world applications in domestic assistance, healthcare, and service automation, highlighting how foundation models enable context-aware, socially responsive, and generalizable robot behaviors. Beyond technical considerations, we discuss ethical, societal, and human-interaction implications associated with deploying foundation model-enabled service robots in human environments. Finally, we outline future research directions emphasizing reliability and lifelong adaptation, privacy-aware and resource-constrained deployment, and governance and human-in-the-loop frameworks required for safe, scalable, and trustworthy mobile service robotics. Read More
DGRAG: Distributed Graph-based Retrieval-Augmented Generation in Edge-Cloud Systemscs.AI updates on arXiv.org arXiv:2505.19847v2 Announce Type: replace
Abstract: Retrieval-Augmented Generation (RAG) improves factuality by grounding LLMs in external knowledge, yet conventional centralized RAG requires aggregating distributed data, raising privacy risks and incurring high retrieval latency and cost. We present DGRAG, a distributed graph-driven RAG framework for edge-cloud collaborative systems. Each edge device organizes local documents into a knowledge graph and periodically uploads subgraph-level summaries to the cloud for lightweight global indexing without exposing raw data. At inference time, queries are first answered on the edge; a gate mechanism assesses the confidence and consistency of multiple local generations to decide whether to return a local answer or escalate the query. For escalated queries, the cloud performs summary-based matching to identify relevant edges, retrieves supporting evidence from them, and generates the final response with a cloud LLM. Experiments on distributed question answering show that DGRAG consistently outperforms decentralized baselines while substantially reducing cloud overhead.
arXiv:2505.19847v2 Announce Type: replace
Abstract: Retrieval-Augmented Generation (RAG) improves factuality by grounding LLMs in external knowledge, yet conventional centralized RAG requires aggregating distributed data, raising privacy risks and incurring high retrieval latency and cost. We present DGRAG, a distributed graph-driven RAG framework for edge-cloud collaborative systems. Each edge device organizes local documents into a knowledge graph and periodically uploads subgraph-level summaries to the cloud for lightweight global indexing without exposing raw data. At inference time, queries are first answered on the edge; a gate mechanism assesses the confidence and consistency of multiple local generations to decide whether to return a local answer or escalate the query. For escalated queries, the cloud performs summary-based matching to identify relevant edges, retrieves supporting evidence from them, and generates the final response with a cloud LLM. Experiments on distributed question answering show that DGRAG consistently outperforms decentralized baselines while substantially reducing cloud overhead. Read More