Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

News
AI News & Insights Featured Image

ECG-Soup: Harnessing Multi-Layer Synergy for ECG Foundation Models AI updates on arXiv.org

ECG-Soup: Harnessing Multi-Layer Synergy for ECG Foundation Modelscs.AI updates on arXiv.org arXiv:2509.00102v3 Announce Type: replace-cross
Abstract: Transformer-based foundation models for Electrocardiograms (ECGs) have recently achieved impressive performance in many downstream applications.

 arXiv:2509.00102v3 Announce Type: replace-cross
Abstract: Transformer-based foundation models for Electrocardiograms (ECGs) have recently achieved impressive performance in many downstream applications. Read More  

News
AI News & Insights Featured Image

Principled Data Augmentation for Learning to Solve Quadratic Programming Problems AI updates on arXiv.org

Principled Data Augmentation for Learning to Solve Quadratic Programming Problemscs.AI updates on arXiv.org arXiv:2506.01728v2 Announce Type: replace-cross
Abstract: Linear and quadratic optimization are crucial in numerous real-world applications, ranging from training machine learning models to solving integer linear programs. Recently, learning-to-optimize methods (L2O) for linear (LPs) or quadratic programs (QPs) using message-passing graph neural networks (MPNNs) have gained traction, promising lightweight, data-driven proxies for solving such optimization problems. For example, they replace the costly computation of strong branching scores in branch-and-bound solvers, thereby reducing the need to solve many such optimization problems. However, robust L2O MPNNs remain challenging in data-scarce settings, especially when addressing complex optimization problems such as QPs. This work introduces a principled approach to data augmentation tailored for QPs via MPNNs. Our method leverages theoretically justified data augmentation techniques to generate diverse yet optimality-preserving instances. Furthermore, we integrate these augmentations into a self-supervised contrastive learning framework, thereby pretraining MPNNs for improved performance on L2O tasks. Extensive experiments demonstrate that our approach improves generalization in supervised scenarios and facilitates effective transfer learning to related optimization problems.

 arXiv:2506.01728v2 Announce Type: replace-cross
Abstract: Linear and quadratic optimization are crucial in numerous real-world applications, ranging from training machine learning models to solving integer linear programs. Recently, learning-to-optimize methods (L2O) for linear (LPs) or quadratic programs (QPs) using message-passing graph neural networks (MPNNs) have gained traction, promising lightweight, data-driven proxies for solving such optimization problems. For example, they replace the costly computation of strong branching scores in branch-and-bound solvers, thereby reducing the need to solve many such optimization problems. However, robust L2O MPNNs remain challenging in data-scarce settings, especially when addressing complex optimization problems such as QPs. This work introduces a principled approach to data augmentation tailored for QPs via MPNNs. Our method leverages theoretically justified data augmentation techniques to generate diverse yet optimality-preserving instances. Furthermore, we integrate these augmentations into a self-supervised contrastive learning framework, thereby pretraining MPNNs for improved performance on L2O tasks. Extensive experiments demonstrate that our approach improves generalization in supervised scenarios and facilitates effective transfer learning to related optimization problems. Read More  

News
AI News & Insights Featured Image

What Do Latent Action Models Actually Learn? AI updates on arXiv.org

What Do Latent Action Models Actually Learn?cs.AI updates on arXiv.org arXiv:2506.15691v2 Announce Type: replace-cross
Abstract: Latent action models (LAMs) aim to learn action-relevant changes from unlabeled videos by compressing changes between frames as latents. However, differences between video frames can be caused by controllable changes as well as exogenous noise, leading to an important concern — do latents capture the changes caused by actions or irrelevant noise? This paper studies this issue analytically, presenting a linear model that encapsulates the essence of LAM learning, while being tractable.This provides several insights, including connections between LAM and principal component analysis (PCA), desiderata of the data-generating policy, and justification of strategies to encourage learning controllable changes using data augmentation, data cleaning, and auxiliary action-prediction. We also provide illustrative results based on numerical simulation, shedding light on the specific structure of observations, actions, and noise in data that influence LAM learning.

 arXiv:2506.15691v2 Announce Type: replace-cross
Abstract: Latent action models (LAMs) aim to learn action-relevant changes from unlabeled videos by compressing changes between frames as latents. However, differences between video frames can be caused by controllable changes as well as exogenous noise, leading to an important concern — do latents capture the changes caused by actions or irrelevant noise? This paper studies this issue analytically, presenting a linear model that encapsulates the essence of LAM learning, while being tractable.This provides several insights, including connections between LAM and principal component analysis (PCA), desiderata of the data-generating policy, and justification of strategies to encourage learning controllable changes using data augmentation, data cleaning, and auxiliary action-prediction. We also provide illustrative results based on numerical simulation, shedding light on the specific structure of observations, actions, and noise in data that influence LAM learning. Read More  

News
AI News & Insights Featured Image

Electronic Circuit Principles of Large Language Models AI updates on arXiv.org

Electronic Circuit Principles of Large Language Modelscs.AI updates on arXiv.org arXiv:2502.03325v2 Announce Type: replace-cross
Abstract: Large language models (LLMs) such as DeepSeek-R1 have achieved remarkable performance across diverse reasoning tasks. To uncover the principles that govern their behaviour, we introduce the Electronic Circuit Principles (ECP), which maps inference-time learning (ITL) onto a semantic electromotive force and inference-time reasoning (ITR) onto a resistive network governed by Ohm’s and Faraday’s laws. This circuit-based modelling yields closed-form predictions of task performance and reveals how modular prompt components interact to shape accuracy. We validated ECP on 70,000 samples spanning 350 reasoning tasks and 9 advanced LLMs, observing a about 60% improvement in Pearson correlation relative to the conventional inference-time scaling law. Moreover, ECP explains the efficacy of 15 established prompting strategies and directs the development of new modular interventions that exceed the median score of the top 80% of participants in both the International Olympiad in Informatics and the International Mathematical Olympiad. By grounding LLM reasoning in electronic-circuit principles, ECP provides a rigorous framework for predicting performance and optimising modular components.

 arXiv:2502.03325v2 Announce Type: replace-cross
Abstract: Large language models (LLMs) such as DeepSeek-R1 have achieved remarkable performance across diverse reasoning tasks. To uncover the principles that govern their behaviour, we introduce the Electronic Circuit Principles (ECP), which maps inference-time learning (ITL) onto a semantic electromotive force and inference-time reasoning (ITR) onto a resistive network governed by Ohm’s and Faraday’s laws. This circuit-based modelling yields closed-form predictions of task performance and reveals how modular prompt components interact to shape accuracy. We validated ECP on 70,000 samples spanning 350 reasoning tasks and 9 advanced LLMs, observing a about 60% improvement in Pearson correlation relative to the conventional inference-time scaling law. Moreover, ECP explains the efficacy of 15 established prompting strategies and directs the development of new modular interventions that exceed the median score of the top 80% of participants in both the International Olympiad in Informatics and the International Mathematical Olympiad. By grounding LLM reasoning in electronic-circuit principles, ECP provides a rigorous framework for predicting performance and optimising modular components. Read More  

News
AI News & Insights Featured Image

Confounding Robust Deep Reinforcement Learning: A Causal Approach AI updates on arXiv.org

Confounding Robust Deep Reinforcement Learning: A Causal Approachcs.AI updates on arXiv.org arXiv:2510.21110v1 Announce Type: new
Abstract: A key task in Artificial Intelligence is learning effective policies for controlling agents in unknown environments to optimize performance measures. Off-policy learning methods, like Q-learning, allow learners to make optimal decisions based on past experiences. This paper studies off-policy learning from biased data in complex and high-dimensional domains where emph{unobserved confounding} cannot be ruled out a priori. Building on the well-celebrated Deep Q-Network (DQN), we propose a novel deep reinforcement learning algorithm robust to confounding biases in observed data. Specifically, our algorithm attempts to find a safe policy for the worst-case environment compatible with the observations. We apply our method to twelve confounded Atari games, and find that it consistently dominates the standard DQN in all games where the observed input to the behavioral and target policies mismatch and unobserved confounders exist.

 arXiv:2510.21110v1 Announce Type: new
Abstract: A key task in Artificial Intelligence is learning effective policies for controlling agents in unknown environments to optimize performance measures. Off-policy learning methods, like Q-learning, allow learners to make optimal decisions based on past experiences. This paper studies off-policy learning from biased data in complex and high-dimensional domains where emph{unobserved confounding} cannot be ruled out a priori. Building on the well-celebrated Deep Q-Network (DQN), we propose a novel deep reinforcement learning algorithm robust to confounding biases in observed data. Specifically, our algorithm attempts to find a safe policy for the worst-case environment compatible with the observations. We apply our method to twelve confounded Atari games, and find that it consistently dominates the standard DQN in all games where the observed input to the behavioral and target policies mismatch and unobserved confounders exist. Read More  

News
AI News & Insights Featured Image

A Real-World Example of Using UDF in DAX Towards Data Science

A Real-World Example of Using UDF in DAXTowards Data Science With the September 2025 release of Power BI, we get the new user-defined function feature. This is an excellent addition to our toolset. Let’s see how to build a real-world example of this new feature.
The post A Real-World Example of Using UDF in DAX appeared first on Towards Data Science.

 With the September 2025 release of Power BI, we get the new user-defined function feature. This is an excellent addition to our toolset. Let’s see how to build a real-world example of this new feature.
The post A Real-World Example of Using UDF in DAX appeared first on Towards Data Science. Read More  

News
AI News & Insights Featured Image

DAO-AI: Evaluating Collective Decision-Making through Agentic AI in Decentralized Governance AI updates on arXiv.org

DAO-AI: Evaluating Collective Decision-Making through Agentic AI in Decentralized Governancecs.AI updates on arXiv.org arXiv:2510.21117v1 Announce Type: new
Abstract: This paper presents a first empirical study of agentic AI as autonomous decision-makers in decentralized governance. Using more than 3K proposals from major protocols, we build an agentic AI voter that interprets proposal contexts, retrieves historical deliberation data, and independently determines its voting position. The agent operates within a realistic financial simulation environment grounded in verifiable blockchain data, implemented through a modular composable program (MCP) workflow that defines data flow and tool usage via Agentics framework. We evaluate how closely the agent’s decisions align with the human and token-weighted outcomes, uncovering strong alignments measured by carefully designed evaluation metrics. Our findings demonstrate that agentic AI can augment collective decision-making by producing interpretable, auditable, and empirically grounded signals in realistic DAO governance settings. The study contributes to the design of explainable and economically rigorous AI agents for decentralized financial systems.

 arXiv:2510.21117v1 Announce Type: new
Abstract: This paper presents a first empirical study of agentic AI as autonomous decision-makers in decentralized governance. Using more than 3K proposals from major protocols, we build an agentic AI voter that interprets proposal contexts, retrieves historical deliberation data, and independently determines its voting position. The agent operates within a realistic financial simulation environment grounded in verifiable blockchain data, implemented through a modular composable program (MCP) workflow that defines data flow and tool usage via Agentics framework. We evaluate how closely the agent’s decisions align with the human and token-weighted outcomes, uncovering strong alignments measured by carefully designed evaluation metrics. Our findings demonstrate that agentic AI can augment collective decision-making by producing interpretable, auditable, and empirically grounded signals in realistic DAO governance settings. The study contributes to the design of explainable and economically rigorous AI agents for decentralized financial systems. Read More  

News
AI News & Insights Featured Image

LLMs can hide text in other text of the same length AI updates on arXiv.org

LLMs can hide text in other text of the same lengthcs.AI updates on arXiv.org arXiv:2510.20075v2 Announce Type: replace
Abstract: A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.

 arXiv:2510.20075v2 Announce Type: replace
Abstract: A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something. Read More  

News
AI News & Insights Featured Image

What Does It Take to Build a Performant Selective Classifier? AI updates on arXiv.org

What Does It Take to Build a Performant Selective Classifier?cs.AI updates on arXiv.org arXiv:2510.20242v2 Announce Type: replace-cross
Abstract: Selective classifiers improve model reliability by abstaining on inputs the model deems uncertain. However, few practical approaches achieve the gold-standard performance of a perfect-ordering oracle that accepts examples exactly in order of correctness. Our work formalizes this shortfall as the selective-classification gap and present the first finite-sample decomposition of this gap to five distinct sources of looseness: Bayes noise, approximation error, ranking error, statistical noise, and implementation- or shift-induced slack. Crucially, our analysis reveals that monotone post-hoc calibration — often believed to strengthen selective classifiers — has limited impact on closing this gap, since it rarely alters the model’s underlying score ranking. Bridging the gap therefore requires scoring mechanisms that can effectively reorder predictions rather than merely rescale them. We validate our decomposition on synthetic two-moons data and on real-world vision and language benchmarks, isolating each error component through controlled experiments. Our results confirm that (i) Bayes noise and limited model capacity can account for substantial gaps, (ii) only richer, feature-aware calibrators meaningfully improve score ordering, and (iii) data shift introduces a separate slack that demands distributionally robust training. Together, our decomposition yields a quantitative error budget as well as actionable design guidelines that practitioners can use to build selective classifiers which approximate ideal oracle behavior more closely.

 arXiv:2510.20242v2 Announce Type: replace-cross
Abstract: Selective classifiers improve model reliability by abstaining on inputs the model deems uncertain. However, few practical approaches achieve the gold-standard performance of a perfect-ordering oracle that accepts examples exactly in order of correctness. Our work formalizes this shortfall as the selective-classification gap and present the first finite-sample decomposition of this gap to five distinct sources of looseness: Bayes noise, approximation error, ranking error, statistical noise, and implementation- or shift-induced slack. Crucially, our analysis reveals that monotone post-hoc calibration — often believed to strengthen selective classifiers — has limited impact on closing this gap, since it rarely alters the model’s underlying score ranking. Bridging the gap therefore requires scoring mechanisms that can effectively reorder predictions rather than merely rescale them. We validate our decomposition on synthetic two-moons data and on real-world vision and language benchmarks, isolating each error component through controlled experiments. Our results confirm that (i) Bayes noise and limited model capacity can account for substantial gaps, (ii) only richer, feature-aware calibrators meaningfully improve score ordering, and (iii) data shift introduces a separate slack that demands distributionally robust training. Together, our decomposition yields a quantitative error budget as well as actionable design guidelines that practitioners can use to build selective classifiers which approximate ideal oracle behavior more closely. Read More  

News
AI News & Insights Featured Image

Intrinsic Goals for Autonomous Agents: Model-Based Exploration in Virtual Zebrafish Predicts Ethological Behavior and Whole-Brain Dynamics AI updates on arXiv.org

Intrinsic Goals for Autonomous Agents: Model-Based Exploration in Virtual Zebrafish Predicts Ethological Behavior and Whole-Brain Dynamicscs.AI updates on arXiv.org arXiv:2506.00138v2 Announce Type: replace-cross
Abstract: Autonomy is a hallmark of animal intelligence, enabling adaptive and intelligent behavior in complex environments without relying on external reward or task structure. Existing reinforcement learning approaches to exploration in reward-free environments, including a class of methods known as model-based intrinsic motivation, exhibit inconsistent exploration patterns and do not converge to an exploratory policy, thus failing to capture robust autonomous behaviors observed in animals. Moreover, systems neuroscience has largely overlooked the neural basis of autonomy, focusing instead on experimental paradigms where animals are motivated by external reward rather than engaging in ethological, naturalistic and task-independent behavior. To bridge these gaps, we introduce a novel model-based intrinsic drive explicitly designed after the principles of autonomous exploration in animals. Our method (3M-Progress) achieves animal-like exploration by tracking divergence between an online world model and a fixed prior learned from an ecological niche. To the best of our knowledge, we introduce the first autonomous embodied agent that predicts brain data entirely from self-supervised optimization of an intrinsic goal — without any behavioral or neural training data — demonstrating that 3M-Progress agents capture the explainable variance in behavioral patterns and whole-brain neural-glial dynamics recorded from autonomously behaving larval zebrafish, thereby providing the first goal-driven, population-level model of neural-glial computation. Our findings establish a computational framework connecting model-based intrinsic motivation to naturalistic behavior, providing a foundation for building artificial agents with animal-like autonomy.

 arXiv:2506.00138v2 Announce Type: replace-cross
Abstract: Autonomy is a hallmark of animal intelligence, enabling adaptive and intelligent behavior in complex environments without relying on external reward or task structure. Existing reinforcement learning approaches to exploration in reward-free environments, including a class of methods known as model-based intrinsic motivation, exhibit inconsistent exploration patterns and do not converge to an exploratory policy, thus failing to capture robust autonomous behaviors observed in animals. Moreover, systems neuroscience has largely overlooked the neural basis of autonomy, focusing instead on experimental paradigms where animals are motivated by external reward rather than engaging in ethological, naturalistic and task-independent behavior. To bridge these gaps, we introduce a novel model-based intrinsic drive explicitly designed after the principles of autonomous exploration in animals. Our method (3M-Progress) achieves animal-like exploration by tracking divergence between an online world model and a fixed prior learned from an ecological niche. To the best of our knowledge, we introduce the first autonomous embodied agent that predicts brain data entirely from self-supervised optimization of an intrinsic goal — without any behavioral or neural training data — demonstrating that 3M-Progress agents capture the explainable variance in behavioral patterns and whole-brain neural-glial dynamics recorded from autonomously behaving larval zebrafish, thereby providing the first goal-driven, population-level model of neural-glial computation. Our findings establish a computational framework connecting model-based intrinsic motivation to naturalistic behavior, providing a foundation for building artificial agents with animal-like autonomy. Read More