ORANGE: An Online Reflection ANd GEneration framework with Domain Knowledge for Text-to-SQLcs.AI updates on arXiv.org arXiv:2511.00985v2 Announce Type: cross
Abstract: Large Language Models (LLMs) have demonstrated remarkable progress in translating natural language to SQL, but a significant semantic gap persists between their general knowledge and domain-specific semantics of databases. Historical translation logs constitute a rich source of this missing in-domain knowledge, where SQL queries inherently encapsulate real-world usage patterns of database schema. Existing methods primarily enhance the reasoning process for individual translations but fail to accumulate in-domain knowledge from past translations. We introduce ORANGE, an online self-evolutionary framework that constructs database-specific knowledge bases by parsing SQL queries from translation logs. By accumulating in-domain knowledge that contains schema and data semantics, ORANGE progressively reduces the semantic gap and enhances the accuracy of subsequent SQL translations. To ensure reliability, we propose a novel nested Chain-of-Thought SQL-to-Text strategy with tuple-semantic tracking, which reduces semantic errors during knowledge generation. Experiments on multiple benchmarks confirm the practicality of ORANGE, demonstrating its effectiveness for real-world Text-to-SQL deployment, particularly in handling complex and domain-specific queries.
arXiv:2511.00985v2 Announce Type: cross
Abstract: Large Language Models (LLMs) have demonstrated remarkable progress in translating natural language to SQL, but a significant semantic gap persists between their general knowledge and domain-specific semantics of databases. Historical translation logs constitute a rich source of this missing in-domain knowledge, where SQL queries inherently encapsulate real-world usage patterns of database schema. Existing methods primarily enhance the reasoning process for individual translations but fail to accumulate in-domain knowledge from past translations. We introduce ORANGE, an online self-evolutionary framework that constructs database-specific knowledge bases by parsing SQL queries from translation logs. By accumulating in-domain knowledge that contains schema and data semantics, ORANGE progressively reduces the semantic gap and enhances the accuracy of subsequent SQL translations. To ensure reliability, we propose a novel nested Chain-of-Thought SQL-to-Text strategy with tuple-semantic tracking, which reduces semantic errors during knowledge generation. Experiments on multiple benchmarks confirm the practicality of ORANGE, demonstrating its effectiveness for real-world Text-to-SQL deployment, particularly in handling complex and domain-specific queries. Read More
Pay for The Second-Best Service: A Game-Theoretic Approach Against Dishonest LLM Providerscs.AI updates on arXiv.org arXiv:2511.00847v2 Announce Type: cross
Abstract: The widespread adoption of Large Language Models (LLMs) through Application Programming Interfaces (APIs) induces a critical vulnerability: the potential for dishonest manipulation by service providers. This manipulation can manifest in various forms, such as secretly substituting a proclaimed high-performance model with a low-cost alternative, or inflating responses with meaningless tokens to increase billing. This work tackles the issue through the lens of algorithmic game theory and mechanism design. We are the first to propose a formal economic model for a realistic user-provider ecosystem, where a user can iteratively delegate $T$ queries to multiple model providers, and providers can engage in a range of strategic behaviors. As our central contribution, we prove that for a continuous strategy space and any $epsilonin(0,frac12)$, there exists an approximate incentive-compatible mechanism with an additive approximation ratio of $O(T^{1-epsilon}log T)$, and a guaranteed quasi-linear second-best user utility. We also prove an impossibility result, stating that no mechanism can guarantee an expected user utility that is asymptotically better than our mechanism. Furthermore, we demonstrate the effectiveness of our mechanism in simulation experiments with real-world API settings.
arXiv:2511.00847v2 Announce Type: cross
Abstract: The widespread adoption of Large Language Models (LLMs) through Application Programming Interfaces (APIs) induces a critical vulnerability: the potential for dishonest manipulation by service providers. This manipulation can manifest in various forms, such as secretly substituting a proclaimed high-performance model with a low-cost alternative, or inflating responses with meaningless tokens to increase billing. This work tackles the issue through the lens of algorithmic game theory and mechanism design. We are the first to propose a formal economic model for a realistic user-provider ecosystem, where a user can iteratively delegate $T$ queries to multiple model providers, and providers can engage in a range of strategic behaviors. As our central contribution, we prove that for a continuous strategy space and any $epsilonin(0,frac12)$, there exists an approximate incentive-compatible mechanism with an additive approximation ratio of $O(T^{1-epsilon}log T)$, and a guaranteed quasi-linear second-best user utility. We also prove an impossibility result, stating that no mechanism can guarantee an expected user utility that is asymptotically better than our mechanism. Furthermore, we demonstrate the effectiveness of our mechanism in simulation experiments with real-world API settings. Read More
FeNN-DMA: A RISC-V SoC for SNN accelerationcs.AI updates on arXiv.org arXiv:2511.00732v1 Announce Type: cross
Abstract: Spiking Neural Networks (SNNs) are a promising, energy-efficient alternative to standard Artificial Neural Networks (ANNs) and are particularly well-suited to spatio-temporal tasks such as keyword spotting and video classification. However, SNNs have a much lower arithmetic intensity than ANNs and are therefore not well-matched to standard accelerators like GPUs and TPUs. Field Programmable Gate Arrays(FPGAs) are designed for such memory-bound workloads and here we develop a novel, fully-programmable RISC-V-based system-on-chip (FeNN-DMA), tailored to simulating SNNs on modern UltraScale+ FPGAs. We show that FeNN-DMA has comparable resource usage and energy requirements to state-of-the-art fixed-function SNN accelerators, yet it is capable of simulating much larger and more complex models. Using this functionality, we demonstrate state-of-the-art classification accuracy on the Spiking Heidelberg Digits and Neuromorphic MNIST tasks.
arXiv:2511.00732v1 Announce Type: cross
Abstract: Spiking Neural Networks (SNNs) are a promising, energy-efficient alternative to standard Artificial Neural Networks (ANNs) and are particularly well-suited to spatio-temporal tasks such as keyword spotting and video classification. However, SNNs have a much lower arithmetic intensity than ANNs and are therefore not well-matched to standard accelerators like GPUs and TPUs. Field Programmable Gate Arrays(FPGAs) are designed for such memory-bound workloads and here we develop a novel, fully-programmable RISC-V-based system-on-chip (FeNN-DMA), tailored to simulating SNNs on modern UltraScale+ FPGAs. We show that FeNN-DMA has comparable resource usage and energy requirements to state-of-the-art fixed-function SNN accelerators, yet it is capable of simulating much larger and more complex models. Using this functionality, we demonstrate state-of-the-art classification accuracy on the Spiking Heidelberg Digits and Neuromorphic MNIST tasks. Read More
FTT-GRU: A Hybrid Fast Temporal Transformer with GRU for Remaining Useful Life Predictioncs.AI updates on arXiv.org arXiv:2511.00564v1 Announce Type: cross
Abstract: Accurate prediction of the remaining useful life (RUL) of industrial machinery is essential for reducing downtime and optimizing maintenance schedules. Existing approaches, such as long short-term memory (LSTM) networks and convolutional neural networks (CNNs), often struggle to model both global temporal dependencies and fine-grained degradation trends in multivariate sensor data. We propose a hybrid model, FTT-GRU, which combines a Fast Temporal Transformer (FTT) — a lightweight Transformer variant using linearized attention via fast Fourier transform (FFT) — with a gated recurrent unit (GRU) layer for sequential modeling. To the best of our knowledge, this is the first application of an FTT with a GRU for RUL prediction on NASA CMAPSS, enabling simultaneous capture of global and local degradation patterns in a compact architecture. On CMAPSS FD001, FTT-GRU attains RMSE 30.76, MAE 18.97, and $R^2=0.45$, with 1.12 ms CPU latency at batch=1. Relative to the best published deep baseline (TCN–Attention), it improves RMSE by 1.16% and MAE by 4.00%. Training curves averaged over $k=3$ runs show smooth convergence with narrow 95% confidence bands, and ablations (GRU-only, FTT-only) support the contribution of both components. These results demonstrate that a compact Transformer-RNN hybrid delivers accurate and efficient RUL predictions on CMAPSS, making it suitable for real-time industrial prognostics.
arXiv:2511.00564v1 Announce Type: cross
Abstract: Accurate prediction of the remaining useful life (RUL) of industrial machinery is essential for reducing downtime and optimizing maintenance schedules. Existing approaches, such as long short-term memory (LSTM) networks and convolutional neural networks (CNNs), often struggle to model both global temporal dependencies and fine-grained degradation trends in multivariate sensor data. We propose a hybrid model, FTT-GRU, which combines a Fast Temporal Transformer (FTT) — a lightweight Transformer variant using linearized attention via fast Fourier transform (FFT) — with a gated recurrent unit (GRU) layer for sequential modeling. To the best of our knowledge, this is the first application of an FTT with a GRU for RUL prediction on NASA CMAPSS, enabling simultaneous capture of global and local degradation patterns in a compact architecture. On CMAPSS FD001, FTT-GRU attains RMSE 30.76, MAE 18.97, and $R^2=0.45$, with 1.12 ms CPU latency at batch=1. Relative to the best published deep baseline (TCN–Attention), it improves RMSE by 1.16% and MAE by 4.00%. Training curves averaged over $k=3$ runs show smooth convergence with narrow 95% confidence bands, and ablations (GRU-only, FTT-only) support the contribution of both components. These results demonstrate that a compact Transformer-RNN hybrid delivers accurate and efficient RUL predictions on CMAPSS, making it suitable for real-time industrial prognostics. Read More
Enhancing Frequency Forgery Clues for Diffusion-Generated Image Detectioncs.AI updates on arXiv.org arXiv:2511.00429v1 Announce Type: cross
Abstract: Diffusion models have achieved remarkable success in image synthesis, but the generated high-quality images raise concerns about potential malicious use. Existing detectors often struggle to capture discriminative clues across different models and settings, limiting their generalization to unseen diffusion models and robustness to various perturbations. To address this issue, we observe that diffusion-generated images exhibit progressively larger differences from natural real images across low- to high-frequency bands. Based on this insight, we propose a simple yet effective representation by enhancing the Frequency Forgery Clue (F^2C) across all frequency bands. Specifically, we introduce a frequency-selective function which serves as a weighted filter to the Fourier spectrum, suppressing less discriminative bands while enhancing more informative ones. This approach, grounded in a comprehensive analysis of frequency-based differences between natural real and diffusion-generated images, enables general detection of images from unseen diffusion models and provides robust resilience to various perturbations. Extensive experiments on various diffusion-generated image datasets demonstrate that our method outperforms state-of-the-art detectors with superior generalization and robustness.
arXiv:2511.00429v1 Announce Type: cross
Abstract: Diffusion models have achieved remarkable success in image synthesis, but the generated high-quality images raise concerns about potential malicious use. Existing detectors often struggle to capture discriminative clues across different models and settings, limiting their generalization to unseen diffusion models and robustness to various perturbations. To address this issue, we observe that diffusion-generated images exhibit progressively larger differences from natural real images across low- to high-frequency bands. Based on this insight, we propose a simple yet effective representation by enhancing the Frequency Forgery Clue (F^2C) across all frequency bands. Specifically, we introduce a frequency-selective function which serves as a weighted filter to the Fourier spectrum, suppressing less discriminative bands while enhancing more informative ones. This approach, grounded in a comprehensive analysis of frequency-based differences between natural real and diffusion-generated images, enables general detection of images from unseen diffusion models and provides robust resilience to various perturbations. Extensive experiments on various diffusion-generated image datasets demonstrate that our method outperforms state-of-the-art detectors with superior generalization and robustness. Read More
Mind the Gap: Missing Cyber Threat Coverage in NIDS Datasets for the Energy Sectorcs.AI updates on arXiv.org arXiv:2511.00360v1 Announce Type: cross
Abstract: Network Intrusion Detection Systems (NIDS) developed using publicly available datasets predominantly focus on enterprise environments, raising concerns about their effectiveness for converged Information Technology (IT) and Operational Technology (OT) in energy infrastructures. This study evaluates the representativeness of five widely used datasets: CIC-IDS2017, SWaT, WADI, Sherlock, and CIC-Modbus2023 against network-detectable MITRE ATT&CK techniques extracted from documented energy sector incidents. Using a structured five-step analytical approach, this article successfully developed and performed a gap analysis that identified 94 network observable techniques from an initial pool of 274 ATT&CK techniques. Sherlock dataset exhibited the highest mean coverage (0.56), followed closely by CIC-IDS2017 (0.55), while SWaT and WADI recorded the lowest scores (0.38). Combining CIC-IDS2017, Sherlock, and CIC-Modbus2023 achieved an aggregate coverage of 92%, highlighting their complementary strengths. The analysis identifies critical gaps, particularly in lateral movement and industrial protocol manipulation, providing a clear pathway for dataset enhancement and more robust NIDS evaluation in hybrid IT/OT energy environments.
arXiv:2511.00360v1 Announce Type: cross
Abstract: Network Intrusion Detection Systems (NIDS) developed using publicly available datasets predominantly focus on enterprise environments, raising concerns about their effectiveness for converged Information Technology (IT) and Operational Technology (OT) in energy infrastructures. This study evaluates the representativeness of five widely used datasets: CIC-IDS2017, SWaT, WADI, Sherlock, and CIC-Modbus2023 against network-detectable MITRE ATT&CK techniques extracted from documented energy sector incidents. Using a structured five-step analytical approach, this article successfully developed and performed a gap analysis that identified 94 network observable techniques from an initial pool of 274 ATT&CK techniques. Sherlock dataset exhibited the highest mean coverage (0.56), followed closely by CIC-IDS2017 (0.55), while SWaT and WADI recorded the lowest scores (0.38). Combining CIC-IDS2017, Sherlock, and CIC-Modbus2023 achieved an aggregate coverage of 92%, highlighting their complementary strengths. The analysis identifies critical gaps, particularly in lateral movement and industrial protocol manipulation, providing a clear pathway for dataset enhancement and more robust NIDS evaluation in hybrid IT/OT energy environments. Read More
Advancing Cognitive Science with LLMscs.AI updates on arXiv.org arXiv:2511.00206v1 Announce Type: new
Abstract: Cognitive science faces ongoing challenges in knowledge synthesis and conceptual clarity, in part due to its multifaceted and interdisciplinary nature. Recent advances in artificial intelligence, particularly the development of large language models (LLMs), offer tools that may help to address these issues. This review examines how LLMs can support areas where the field has historically struggled, including establishing cross-disciplinary connections, formalizing theories, developing clear measurement taxonomies, achieving generalizability through integrated modeling frameworks, and capturing contextual and individual variation. We outline the current capabilities and limitations of LLMs in these domains, including potential pitfalls. Taken together, we conclude that LLMs can serve as tools for a more integrative and cumulative cognitive science when used judiciously to complement, rather than replace, human expertise.
arXiv:2511.00206v1 Announce Type: new
Abstract: Cognitive science faces ongoing challenges in knowledge synthesis and conceptual clarity, in part due to its multifaceted and interdisciplinary nature. Recent advances in artificial intelligence, particularly the development of large language models (LLMs), offer tools that may help to address these issues. This review examines how LLMs can support areas where the field has historically struggled, including establishing cross-disciplinary connections, formalizing theories, developing clear measurement taxonomies, achieving generalizability through integrated modeling frameworks, and capturing contextual and individual variation. We outline the current capabilities and limitations of LLMs in these domains, including potential pitfalls. Taken together, we conclude that LLMs can serve as tools for a more integrative and cumulative cognitive science when used judiciously to complement, rather than replace, human expertise. Read More
Multi-Step Reasoning with Large Language Models, a Surveycs.AI updates on arXiv.org arXiv:2407.11511v3 Announce Type: replace
Abstract: Large language models (LLMs) with billions of parameters exhibit in-context learning abilities, enabling few-shot learning on tasks that the model was not specifically trained for. Traditional models achieve breakthrough performance on language tasks, but do not perform well on basic reasoning benchmarks. However, a new in-context learning approach, Chain-of-thought, has demonstrated strong multi-step reasoning abilities on these benchmarks. The research on LLM reasoning abilities started with the question whether LLMs can solve grade school math word problems, and has expanded to other tasks in the past few years. This article reviews the field of multi-step reasoning with LLMs. We propose a taxonomy that identifies different ways to generate, evaluate, and control multi-step reasoning. We provide an in-depth coverage of core approaches and open problems, and we propose a research agenda for the near future. We find that multi-step reasoning approaches have progressed beyond math word problems, and can now successfully solve challenges in logic, combinatorial games, and robotics, sometimes by first generating code that is then executed by external tools. Many studies in multi-step methods use reinforcement learning for finetuning, external optimization loops, in-context reinforcement learning, and self-reflection.
arXiv:2407.11511v3 Announce Type: replace
Abstract: Large language models (LLMs) with billions of parameters exhibit in-context learning abilities, enabling few-shot learning on tasks that the model was not specifically trained for. Traditional models achieve breakthrough performance on language tasks, but do not perform well on basic reasoning benchmarks. However, a new in-context learning approach, Chain-of-thought, has demonstrated strong multi-step reasoning abilities on these benchmarks. The research on LLM reasoning abilities started with the question whether LLMs can solve grade school math word problems, and has expanded to other tasks in the past few years. This article reviews the field of multi-step reasoning with LLMs. We propose a taxonomy that identifies different ways to generate, evaluate, and control multi-step reasoning. We provide an in-depth coverage of core approaches and open problems, and we propose a research agenda for the near future. We find that multi-step reasoning approaches have progressed beyond math word problems, and can now successfully solve challenges in logic, combinatorial games, and robotics, sometimes by first generating code that is then executed by external tools. Many studies in multi-step methods use reinforcement learning for finetuning, external optimization loops, in-context reinforcement learning, and self-reflection. Read More
The Ghost in the Keys: A Disklavier Demo for Human-AI Musical Co-Creativitycs.AI updates on arXiv.org arXiv:2511.01663v1 Announce Type: cross
Abstract: While generative models for music composition are increasingly capable, their adoption by musicians is hindered by text-prompting, an asynchronous workflow disconnected from the embodied, responsive nature of instrumental performance. To address this, we introduce Aria-Duet, an interactive system facilitating a real-time musical duet between a human pianist and Aria, a state-of-the-art generative model, using a Yamaha Disklavier as a shared physical interface. The framework enables a turn-taking collaboration: the user performs, signals a handover, and the model generates a coherent continuation performed acoustically on the piano. Beyond describing the technical architecture enabling this low-latency interaction, we analyze the system’s output from a musicological perspective, finding the model can maintain stylistic semantics and develop coherent phrasal ideas, demonstrating that such embodied systems can engage in musically sophisticated dialogue and open a promising new path for human-AI co-creation.
arXiv:2511.01663v1 Announce Type: cross
Abstract: While generative models for music composition are increasingly capable, their adoption by musicians is hindered by text-prompting, an asynchronous workflow disconnected from the embodied, responsive nature of instrumental performance. To address this, we introduce Aria-Duet, an interactive system facilitating a real-time musical duet between a human pianist and Aria, a state-of-the-art generative model, using a Yamaha Disklavier as a shared physical interface. The framework enables a turn-taking collaboration: the user performs, signals a handover, and the model generates a coherent continuation performed acoustically on the piano. Beyond describing the technical architecture enabling this low-latency interaction, we analyze the system’s output from a musicological perspective, finding the model can maintain stylistic semantics and develop coherent phrasal ideas, demonstrating that such embodied systems can engage in musically sophisticated dialogue and open a promising new path for human-AI co-creation. Read More
Unlocking Reasoning Capabilities in LLMs via Reinforcement Learning Explorationcs.AI updates on arXiv.org arXiv:2510.03865v2 Announce Type: replace-cross
Abstract: Reinforcement learning with verifiable rewards (RLVR) has recently enhanced the reasoning capabilities of large language models (LLMs), particularly for mathematical problem solving. However, a fundamental limitation remains: as the sampling budget increases, the advantage of RLVR-trained models over their pretrained bases often diminishes or even vanishes, revealing a strong dependence on the base model’s restricted search space. We attribute this phenomenon to the widespread use of the reverse Kullback-Leibler (KL) divergence regularizer, whose mode-seeking behavior keeps the policy trapped inside the base model’s support region and hampers wider exploration. To address this issue, we propose RAPO (Rewards-Aware Policy Optimization), an algorithm to promote broader yet focused exploration. Our method (i) utilizes the forward KL penalty to replace the reverse KL penalty for out-of-distribution exploration, and (ii) reweights the reference policy to facilitate adaptive in-distribution exploration. We train Qwen2.5-3B and 7B models with RAPO on the 8K SimpleRL-Zero dataset, without supervised fine-tuning, and evaluate them on AIME2024 and AIME2025. Results show that RAPO consistently improves problem-solving performance. Notably, RAPO enables models to surpass the base model’s performance ceiling and solves previously intractable problems, advancing the frontier of RLVR for challenging reasoning tasks.
arXiv:2510.03865v2 Announce Type: replace-cross
Abstract: Reinforcement learning with verifiable rewards (RLVR) has recently enhanced the reasoning capabilities of large language models (LLMs), particularly for mathematical problem solving. However, a fundamental limitation remains: as the sampling budget increases, the advantage of RLVR-trained models over their pretrained bases often diminishes or even vanishes, revealing a strong dependence on the base model’s restricted search space. We attribute this phenomenon to the widespread use of the reverse Kullback-Leibler (KL) divergence regularizer, whose mode-seeking behavior keeps the policy trapped inside the base model’s support region and hampers wider exploration. To address this issue, we propose RAPO (Rewards-Aware Policy Optimization), an algorithm to promote broader yet focused exploration. Our method (i) utilizes the forward KL penalty to replace the reverse KL penalty for out-of-distribution exploration, and (ii) reweights the reference policy to facilitate adaptive in-distribution exploration. We train Qwen2.5-3B and 7B models with RAPO on the 8K SimpleRL-Zero dataset, without supervised fine-tuning, and evaluate them on AIME2024 and AIME2025. Results show that RAPO consistently improves problem-solving performance. Notably, RAPO enables models to surpass the base model’s performance ceiling and solves previously intractable problems, advancing the frontier of RLVR for challenging reasoning tasks. Read More