Dynamic Test-Time Compute Scaling in Control Policy: Difficulty-Aware Stochastic Interpolant Policycs.AI updates on arXiv.org arXiv:2511.20906v1 Announce Type: cross
Abstract: Diffusion- and flow-based policies deliver state-of-the-art performance on long-horizon robotic manipulation and imitation learning tasks. However, these controllers employ a fixed inference budget at every control step, regardless of task complexity, leading to computational inefficiency for simple subtasks while potentially underperforming on challenging ones. To address these issues, we introduce Difficulty-Aware Stochastic Interpolant Policy (DA-SIP), a framework that enables robotic controllers to adaptively adjust their integration horizon in real time based on task difficulty. Our approach employs a difficulty classifier that analyzes observations to dynamically select the step budget, the optimal solver variant, and ODE/SDE integration at each control cycle. DA-SIP builds upon the stochastic interpolant formulation to provide a unified framework that unlocks diverse training and inference configurations for diffusion- and flow-based policies. Through comprehensive benchmarks across diverse manipulation tasks, DA-SIP achieves 2.6-4.4x reduction in total computation time while maintaining task success rates comparable to fixed maximum-computation baselines. By implementing adaptive computation within this framework, DA-SIP transforms generative robot controllers into efficient, task-aware systems that intelligently allocate inference resources where they provide the greatest benefit.
arXiv:2511.20906v1 Announce Type: cross
Abstract: Diffusion- and flow-based policies deliver state-of-the-art performance on long-horizon robotic manipulation and imitation learning tasks. However, these controllers employ a fixed inference budget at every control step, regardless of task complexity, leading to computational inefficiency for simple subtasks while potentially underperforming on challenging ones. To address these issues, we introduce Difficulty-Aware Stochastic Interpolant Policy (DA-SIP), a framework that enables robotic controllers to adaptively adjust their integration horizon in real time based on task difficulty. Our approach employs a difficulty classifier that analyzes observations to dynamically select the step budget, the optimal solver variant, and ODE/SDE integration at each control cycle. DA-SIP builds upon the stochastic interpolant formulation to provide a unified framework that unlocks diverse training and inference configurations for diffusion- and flow-based policies. Through comprehensive benchmarks across diverse manipulation tasks, DA-SIP achieves 2.6-4.4x reduction in total computation time while maintaining task success rates comparable to fixed maximum-computation baselines. By implementing adaptive computation within this framework, DA-SIP transforms generative robot controllers into efficient, task-aware systems that intelligently allocate inference resources where they provide the greatest benefit. Read More
Microsoft has announced plans to improve the security of Entra ID authentication by blocking unauthorized script injection attacks starting a year from now. The update to its Content Security Policy (CSP) aims to enhance the Entra ID sign-in experience at “login.microsoftonline[.]com” by only letting scripts from trusted Microsoft domains run. “This update strengthens security and […]
MNM : Multi-level Neuroimaging Meta-analysis with Hyperbolic Brain-Text Representationscs.AI updates on arXiv.org arXiv:2511.21092v1 Announce Type: cross
Abstract: Various neuroimaging studies suffer from small sample size problem which often limit their reliability. Meta-analysis addresses this challenge by aggregating findings from different studies to identify consistent patterns of brain activity. However, traditional approaches based on keyword retrieval or linear mappings often overlook the rich hierarchical structure in the brain. In this work, we propose a novel framework that leverages hyperbolic geometry to bridge the gap between neuroscience literature and brain activation maps. By embedding text from research articles and corresponding brain images into a shared hyperbolic space via the Lorentz model, our method captures both semantic similarity and hierarchical organization inherent in neuroimaging data. In the hyperbolic space, our method performs multi-level neuroimaging meta-analysis (MNM) by 1) aligning brain and text embeddings for semantic correspondence, 2) guiding hierarchy between text and brain activations, and 3) preserving the hierarchical relationships within brain activation patterns. Experimental results demonstrate that our model outperforms baselines, offering a robust and interpretable paradigm of multi-level neuroimaging meta-analysis via hyperbolic brain-text representation.
arXiv:2511.21092v1 Announce Type: cross
Abstract: Various neuroimaging studies suffer from small sample size problem which often limit their reliability. Meta-analysis addresses this challenge by aggregating findings from different studies to identify consistent patterns of brain activity. However, traditional approaches based on keyword retrieval or linear mappings often overlook the rich hierarchical structure in the brain. In this work, we propose a novel framework that leverages hyperbolic geometry to bridge the gap between neuroscience literature and brain activation maps. By embedding text from research articles and corresponding brain images into a shared hyperbolic space via the Lorentz model, our method captures both semantic similarity and hierarchical organization inherent in neuroimaging data. In the hyperbolic space, our method performs multi-level neuroimaging meta-analysis (MNM) by 1) aligning brain and text embeddings for semantic correspondence, 2) guiding hierarchy between text and brain activations, and 3) preserving the hierarchical relationships within brain activation patterns. Experimental results demonstrate that our model outperforms baselines, offering a robust and interpretable paradigm of multi-level neuroimaging meta-analysis via hyperbolic brain-text representation. Read More
OpenApps: Simulating Environment Variations to Measure UI-Agent Reliabilitycs.AI updates on arXiv.org arXiv:2511.20766v1 Announce Type: new
Abstract: Reliability is key to realizing the promise of autonomous UI-Agents, multimodal agents that directly interact with apps in the same manner as humans, as users must be able to trust an agent to complete a given task. Current evaluations rely on fixed environments, often clones of existing apps, which are limited in that they can only shed light on whether or how often an agent can complete a task within a specific environment. When deployed however, agents are likely to encounter variations in app design and content that can affect an agent’s ability to complete a task. To address this blind spot of measuring agent reliability across app variations, we develop OpenApps, a light-weight open-source ecosystem with six apps (messenger, calendar, maps, etc.) that are configurable in appearance and content. OpenApps requires just a single CPU to run, enabling easy generation and deployment of thousands of versions of each app. Specifically, we run more than 10,000 independent evaluations to study reliability across seven leading multimodal agents. We find that while standard reliability within a fixed app is relatively stable, reliability can vary drastically when measured across app variations. Task success rates for many agents can fluctuate by more than $50%$ across app variations. For example, Kimi-VL-3B’s average success across all tasks fluctuates from $63%$ to just $4%$ across app versions. We also find agent behaviors such as looping or hallucinating actions can differ drastically depending on the environment configuration. These initial findings highlight the importance of measuring reliability along this new dimension of app variations. OpenApps is available at https://facebookresearch.github.io/OpenApps/
arXiv:2511.20766v1 Announce Type: new
Abstract: Reliability is key to realizing the promise of autonomous UI-Agents, multimodal agents that directly interact with apps in the same manner as humans, as users must be able to trust an agent to complete a given task. Current evaluations rely on fixed environments, often clones of existing apps, which are limited in that they can only shed light on whether or how often an agent can complete a task within a specific environment. When deployed however, agents are likely to encounter variations in app design and content that can affect an agent’s ability to complete a task. To address this blind spot of measuring agent reliability across app variations, we develop OpenApps, a light-weight open-source ecosystem with six apps (messenger, calendar, maps, etc.) that are configurable in appearance and content. OpenApps requires just a single CPU to run, enabling easy generation and deployment of thousands of versions of each app. Specifically, we run more than 10,000 independent evaluations to study reliability across seven leading multimodal agents. We find that while standard reliability within a fixed app is relatively stable, reliability can vary drastically when measured across app variations. Task success rates for many agents can fluctuate by more than $50%$ across app variations. For example, Kimi-VL-3B’s average success across all tasks fluctuates from $63%$ to just $4%$ across app versions. We also find agent behaviors such as looping or hallucinating actions can differ drastically depending on the environment configuration. These initial findings highlight the importance of measuring reliability along this new dimension of app variations. OpenApps is available at https://facebookresearch.github.io/OpenApps/ Read More
Length-MAX Tokenizer for Language Modelscs.AI updates on arXiv.org arXiv:2511.20849v1 Announce Type: cross
Abstract: We introduce a new tokenizer for language models that minimizes the average tokens per character, thereby reducing the number of tokens needed to represent text during training and to generate text during inference. Our method, which we refer to as the Length-MAX tokenizer, obtains its vocabulary by casting a length-weighted objective maximization as a graph partitioning problem and developing a greedy approximation algorithm. On FineWeb and diverse domains, it yields 14–18% fewer tokens than Byte Pair Encoding (BPE) across vocabulary sizes from 10K to 50K, and the reduction is 13.0% when the size is 64K. Training GPT-2 models at 124M, 355M, and 1.3B parameters from scratch with five runs each shows 18.5%, 17.2%, and 18.5% fewer steps, respectively, to reach a fixed validation loss, and 13.7%, 12.7%, and 13.7% lower inference latency, together with a 16% throughput gain at 124M, while consistently improving on downstream tasks including reducing LAMBADA perplexity by 11.7% and enhancing HellaSwag accuracy by 4.3%. Moreover, the Length-MAX tokenizer achieves 99.62% vocabulary coverage and the out-of-vocabulary rate remains low at 0.12% on test sets. These results demonstrate that optimizing for average token length, rather than frequency alone, offers an effective approach to more efficient language modeling without sacrificing — and often improving — downstream performance. The tokenizer is compatible with production systems and reduces embedding and KV-cache memory by 18% at inference.
arXiv:2511.20849v1 Announce Type: cross
Abstract: We introduce a new tokenizer for language models that minimizes the average tokens per character, thereby reducing the number of tokens needed to represent text during training and to generate text during inference. Our method, which we refer to as the Length-MAX tokenizer, obtains its vocabulary by casting a length-weighted objective maximization as a graph partitioning problem and developing a greedy approximation algorithm. On FineWeb and diverse domains, it yields 14–18% fewer tokens than Byte Pair Encoding (BPE) across vocabulary sizes from 10K to 50K, and the reduction is 13.0% when the size is 64K. Training GPT-2 models at 124M, 355M, and 1.3B parameters from scratch with five runs each shows 18.5%, 17.2%, and 18.5% fewer steps, respectively, to reach a fixed validation loss, and 13.7%, 12.7%, and 13.7% lower inference latency, together with a 16% throughput gain at 124M, while consistently improving on downstream tasks including reducing LAMBADA perplexity by 11.7% and enhancing HellaSwag accuracy by 4.3%. Moreover, the Length-MAX tokenizer achieves 99.62% vocabulary coverage and the out-of-vocabulary rate remains low at 0.12% on test sets. These results demonstrate that optimizing for average token length, rather than frequency alone, offers an effective approach to more efficient language modeling without sacrificing — and often improving — downstream performance. The tokenizer is compatible with production systems and reduces embedding and KV-cache memory by 18% at inference. Read More
OpenAI is notifying some ChatGPT API customers that limited identifying information was exposed following a breach at its third-party analytics provider Mixpanel. […] Read More
Unrestricted large language models (LLMs) like WormGPT 4 and KawaiiGPT are improving their capabilities to generate malicious code, delivering functional scripts for ransomware encryptors and lateral movement. […] Read More
The threat actor known as Bloody Wolf has been attributed to a cyber attack campaign that has targeted Kyrgyzstan since at least June 2025 with the goal of delivering NetSupport RAT. As of October 2025, the activity has expanded to also single out Uzbekistan, Group-IB researchers Amirbek Kurbanov and Volen Kayo said in a report […]
GreyNoise Labs has launched a free tool called GreyNoise IP Check that lets users check if their IP address has been observed in malicious scanning operations, like botnet and residential proxy networks. […] Read More
Hackers have been busy again this week. From fake voice calls and AI-powered malware to huge money-laundering busts and new scams, there’s a lot happening in the cyber world. Criminals are getting creative — using smart tricks to steal data, sound real, and hide in plain sight. But they’re not the only ones moving fast. […]