Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

News
AI News & Insights Featured Image

A Clustering-Based Variable Ordering Framework for Relaxed Decision Diagrams for Maximum Weighted Independent Set Problem AI updates on arXiv.org

A Clustering-Based Variable Ordering Framework for Relaxed Decision Diagrams for Maximum Weighted Independent Set Problemcs.AI updates on arXiv.org arXiv:2512.15198v1 Announce Type: new
Abstract: Efficient exact algorithms for Discrete Optimization (DO) rely heavily on strong primal and dual bounds. Relaxed Decision Diagrams (DDs) provide a versatile mechanism for deriving such dual bounds by compactly over-approximating the solution space through node merging. However, the quality of these relaxed diagrams, i.e. the tightness of the resulting dual bounds, depends critically on the variable ordering and the merging decisions executed during compilation. While dynamic variable ordering heuristics effectively tighten bounds, they often incur computational overhead when evaluated globally across the entire variable set. To mitigate this trade-off, this work introduces a novel clustering-based framework for variable ordering. Instead of applying dynamic ordering heuristics to the full set of unfixed variables, we first partition variables into clusters. We then leverage this structural decomposition to guide the ordering process, significantly reducing the heuristic’s search space. Within this framework, we investigate two distinct strategies: Cluster-to-Cluster, which processes clusters sequentially using problem-specific aggregate criteria (such as cumulative vertex weights in the Maximum Weighted Independent Set Problem (MWISP)), and Pick-and-Sort, which iteratively selects and sorts representative variables from each cluster to balance local diversity with heuristic guidance. Later on, developing some theoretical results on the growth of the size of DDs for MWISP we propose two different policies for setting the number of clusters within the proposed framework. We embed these strategies into a DD-based branch-and-bound algorithm and evaluate them on the MWISP. Across benchmark instances, the proposed methodology consistently reduces computational costs compared to standard dynamic variable ordering baseline.

 arXiv:2512.15198v1 Announce Type: new
Abstract: Efficient exact algorithms for Discrete Optimization (DO) rely heavily on strong primal and dual bounds. Relaxed Decision Diagrams (DDs) provide a versatile mechanism for deriving such dual bounds by compactly over-approximating the solution space through node merging. However, the quality of these relaxed diagrams, i.e. the tightness of the resulting dual bounds, depends critically on the variable ordering and the merging decisions executed during compilation. While dynamic variable ordering heuristics effectively tighten bounds, they often incur computational overhead when evaluated globally across the entire variable set. To mitigate this trade-off, this work introduces a novel clustering-based framework for variable ordering. Instead of applying dynamic ordering heuristics to the full set of unfixed variables, we first partition variables into clusters. We then leverage this structural decomposition to guide the ordering process, significantly reducing the heuristic’s search space. Within this framework, we investigate two distinct strategies: Cluster-to-Cluster, which processes clusters sequentially using problem-specific aggregate criteria (such as cumulative vertex weights in the Maximum Weighted Independent Set Problem (MWISP)), and Pick-and-Sort, which iteratively selects and sorts representative variables from each cluster to balance local diversity with heuristic guidance. Later on, developing some theoretical results on the growth of the size of DDs for MWISP we propose two different policies for setting the number of clusters within the proposed framework. We embed these strategies into a DD-based branch-and-bound algorithm and evaluate them on the MWISP. Across benchmark instances, the proposed methodology consistently reduces computational costs compared to standard dynamic variable ordering baseline. Read More  

News
AI News & Insights Featured Image

LADY: Linear Attention for Autonomous Driving Efficiency without Transformers AI updates on arXiv.org

LADY: Linear Attention for Autonomous Driving Efficiency without Transformerscs.AI updates on arXiv.org arXiv:2512.15038v2 Announce Type: new
Abstract: End-to-end paradigms have demonstrated great potential for autonomous driving. Additionally, most existing methods are built upon Transformer architectures. However, transformers incur a quadratic attention cost, limiting their ability to model long spatial and temporal sequences-particularly on resource-constrained edge platforms. As autonomous driving inherently demands efficient temporal modeling, this challenge severely limits their deployment and real-time performance. Recently, linear attention mechanisms have gained increasing attention due to their superior spatiotemporal complexity. However, existing linear attention architectures are limited to self-attention, lacking support for cross-modal and cross-temporal interactions-both crucial for autonomous driving. In this work, we propose LADY, the first fully linear attention-based generative model for end-to-end autonomous driving. LADY enables fusion of long-range temporal context at inference with constant computational and memory costs, regardless of the history length of camera and LiDAR features. Additionally, we introduce a lightweight linear cross-attention mechanism that enables effective cross-modal information exchange. Experiments on the NAVSIM and Bench2Drive benchmarks demonstrate that LADY achieves state-of-the-art performance with constant-time and memory complexity, offering improved planning performance and significantly reduced computational cost. Additionally, the model has been deployed and validated on edge devices, demonstrating its practicality in resource-limited scenarios.

 arXiv:2512.15038v2 Announce Type: new
Abstract: End-to-end paradigms have demonstrated great potential for autonomous driving. Additionally, most existing methods are built upon Transformer architectures. However, transformers incur a quadratic attention cost, limiting their ability to model long spatial and temporal sequences-particularly on resource-constrained edge platforms. As autonomous driving inherently demands efficient temporal modeling, this challenge severely limits their deployment and real-time performance. Recently, linear attention mechanisms have gained increasing attention due to their superior spatiotemporal complexity. However, existing linear attention architectures are limited to self-attention, lacking support for cross-modal and cross-temporal interactions-both crucial for autonomous driving. In this work, we propose LADY, the first fully linear attention-based generative model for end-to-end autonomous driving. LADY enables fusion of long-range temporal context at inference with constant computational and memory costs, regardless of the history length of camera and LiDAR features. Additionally, we introduce a lightweight linear cross-attention mechanism that enables effective cross-modal information exchange. Experiments on the NAVSIM and Bench2Drive benchmarks demonstrate that LADY achieves state-of-the-art performance with constant-time and memory complexity, offering improved planning performance and significantly reduced computational cost. Additionally, the model has been deployed and validated on edge devices, demonstrating its practicality in resource-limited scenarios. Read More  

News
AI News & Insights Featured Image

Beyond Fast and Slow: Cognitive-Inspired Elastic Reasoning for Large Language Models AI updates on arXiv.org

Beyond Fast and Slow: Cognitive-Inspired Elastic Reasoning for Large Language Modelscs.AI updates on arXiv.org arXiv:2512.15089v1 Announce Type: new
Abstract: Large language models (LLMs) have demonstrated impressive performance across various language tasks. However, existing LLM reasoning strategies mainly rely on the LLM itself with fast or slow mode (like o1 thinking) and thus struggle to balance reasoning efficiency and accuracy across queries of varying difficulties. In this paper, we propose Cognitive-Inspired Elastic Reasoning (CogER), a framework inspired by human hierarchical reasoning that dynamically selects the most suitable reasoning strategy for each query. Specifically, CogER first assesses the complexity of incoming queries and assigns them to one of several predefined levels, each corresponding to a tailored processing strategy, thereby addressing the challenge of unobservable query difficulty. To achieve automatic strategy selection, we model the process as a Markov Decision Process and train a CogER-Agent using reinforcement learning. The agent is guided by a reward function that balances solution quality and computational cost, ensuring resource-efficient reasoning. Moreover, for queries requiring external tools, we introduce Cognitive Tool-Assisted Reasoning, which enables the LLM to autonomously invoke external tools within its chain-of-thought. Extensive experiments demonstrate that CogER outperforms state-of-the-art Test-Time scaling methods, achieving at least a 13% relative improvement in average exact match on In-Domain tasks and an 8% relative gain on Out-of-Domain tasks.

 arXiv:2512.15089v1 Announce Type: new
Abstract: Large language models (LLMs) have demonstrated impressive performance across various language tasks. However, existing LLM reasoning strategies mainly rely on the LLM itself with fast or slow mode (like o1 thinking) and thus struggle to balance reasoning efficiency and accuracy across queries of varying difficulties. In this paper, we propose Cognitive-Inspired Elastic Reasoning (CogER), a framework inspired by human hierarchical reasoning that dynamically selects the most suitable reasoning strategy for each query. Specifically, CogER first assesses the complexity of incoming queries and assigns them to one of several predefined levels, each corresponding to a tailored processing strategy, thereby addressing the challenge of unobservable query difficulty. To achieve automatic strategy selection, we model the process as a Markov Decision Process and train a CogER-Agent using reinforcement learning. The agent is guided by a reward function that balances solution quality and computational cost, ensuring resource-efficient reasoning. Moreover, for queries requiring external tools, we introduce Cognitive Tool-Assisted Reasoning, which enables the LLM to autonomously invoke external tools within its chain-of-thought. Extensive experiments demonstrate that CogER outperforms state-of-the-art Test-Time scaling methods, achieving at least a 13% relative improvement in average exact match on In-Domain tasks and an 8% relative gain on Out-of-Domain tasks. Read More  

News
AI News & Insights Featured Image

Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contamination AI updates on arXiv.org

Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contaminationcs.AI updates on arXiv.org arXiv:2507.10532v3 Announce Type: replace-cross
Abstract: Reasoning in large language models has long been a central research focus, and recent studies employing reinforcement learning (RL) have introduced diverse methods that yield substantial performance gains with minimal or even no external supervision. Surprisingly, some studies even suggest that random or incorrect reward signals can enhance performance. However, these breakthroughs are predominantly observed for the mathematically strong Qwen2.5 series on benchmarks such as MATH-500, AMC, and AIME, and seldom transfer to models like Llama, which warrants a more in-depth investigation. In this work, our empirical analysis reveals that pre-training on massive web-scale corpora leaves Qwen2.5 susceptible to data contamination in widely used benchmarks. Consequently, conclusions derived from contaminated benchmarks on Qwen2.5 series may be unreliable. To obtain trustworthy evaluation results, we introduce a generator that creates fully clean arithmetic problems of arbitrary length and difficulty, dubbed RandomCalculation. Using this leakage-free dataset, we show that only accurate reward signals yield steady improvements that surpass the base model’s performance boundary in mathematical reasoning, whereas random or incorrect rewards do not. Moreover, we conduct more fine-grained analyses to elucidate the factors underlying the different performance observed on the MATH-500 and RandomCalculation benchmarks. Consequently, we recommend that future studies evaluate models on uncontaminated benchmarks and, when feasible, test various model series to ensure trustworthy conclusions about RL and related methods.

 arXiv:2507.10532v3 Announce Type: replace-cross
Abstract: Reasoning in large language models has long been a central research focus, and recent studies employing reinforcement learning (RL) have introduced diverse methods that yield substantial performance gains with minimal or even no external supervision. Surprisingly, some studies even suggest that random or incorrect reward signals can enhance performance. However, these breakthroughs are predominantly observed for the mathematically strong Qwen2.5 series on benchmarks such as MATH-500, AMC, and AIME, and seldom transfer to models like Llama, which warrants a more in-depth investigation. In this work, our empirical analysis reveals that pre-training on massive web-scale corpora leaves Qwen2.5 susceptible to data contamination in widely used benchmarks. Consequently, conclusions derived from contaminated benchmarks on Qwen2.5 series may be unreliable. To obtain trustworthy evaluation results, we introduce a generator that creates fully clean arithmetic problems of arbitrary length and difficulty, dubbed RandomCalculation. Using this leakage-free dataset, we show that only accurate reward signals yield steady improvements that surpass the base model’s performance boundary in mathematical reasoning, whereas random or incorrect rewards do not. Moreover, we conduct more fine-grained analyses to elucidate the factors underlying the different performance observed on the MATH-500 and RandomCalculation benchmarks. Consequently, we recommend that future studies evaluate models on uncontaminated benchmarks and, when feasible, test various model series to ensure trustworthy conclusions about RL and related methods. Read More  

News
AI News & Insights Featured Image

Six Lessons Learned Building RAG Systems in Production Towards Data Science

Six Lessons Learned Building RAG Systems in ProductionTowards Data Science Best practices for data quality, retrieval design, and evaluation in production RAG systems
The post Six Lessons Learned Building RAG Systems in Production appeared first on Towards Data Science.

 Best practices for data quality, retrieval design, and evaluation in production RAG systems
The post Six Lessons Learned Building RAG Systems in Production appeared first on Towards Data Science. Read More  

News
AI News & Insights Featured Image

Zara’s use of AI shows how retail workflows are quietly changing AI News

Zara’s use of AI shows how retail workflows are quietly changingAI News Zara is testing how far generative AI can be pushed into everyday retail operations, starting with a part of the business that rarely gets attention in technology discussions: product imagery. Recent reporting shows the retailer using AI to generate new images of real models wearing different outfits, based on existing photoshoots. Models remain involved in
The post Zara’s use of AI shows how retail workflows are quietly changing appeared first on AI News.

 Zara is testing how far generative AI can be pushed into everyday retail operations, starting with a part of the business that rarely gets attention in technology discussions: product imagery. Recent reporting shows the retailer using AI to generate new images of real models wearing different outfits, based on existing photoshoots. Models remain involved in
The post Zara’s use of AI shows how retail workflows are quietly changing appeared first on AI News. Read More  

News
AI News & Insights Featured Image

A Complete Workflow for Automated Prompt Optimization Using Gemini Flash, Few-Shot Selection, and Evolutionary Instruction Search MarkTechPost

A Complete Workflow for Automated Prompt Optimization Using Gemini Flash, Few-Shot Selection, and Evolutionary Instruction SearchMarkTechPost In this tutorial, we shift from traditional prompt crafting to a more systematic, programmable approach by treating prompts as tunable parameters rather than static text. Instead of guessing which instruction or example works best, we build an optimization loop around Gemini 2.0 Flash that experiments, evaluates, and automatically selects the strongest prompt configuration. In this
The post A Complete Workflow for Automated Prompt Optimization Using Gemini Flash, Few-Shot Selection, and Evolutionary Instruction Search appeared first on MarkTechPost.

 In this tutorial, we shift from traditional prompt crafting to a more systematic, programmable approach by treating prompts as tunable parameters rather than static text. Instead of guessing which instruction or example works best, we build an optimization loop around Gemini 2.0 Flash that experiments, evaluates, and automatically selects the strongest prompt configuration. In this
The post A Complete Workflow for Automated Prompt Optimization Using Gemini Flash, Few-Shot Selection, and Evolutionary Instruction Search appeared first on MarkTechPost. Read More  

News
AI News & Insights Featured Image

Exploring User Acceptance and Concerns toward LLM-powered Conversational Agents in Immersive Extended Reality AI updates on arXiv.org

Exploring User Acceptance and Concerns toward LLM-powered Conversational Agents in Immersive Extended Realitycs.AI updates on arXiv.org arXiv:2512.15343v1 Announce Type: cross
Abstract: The rapid development of generative artificial intelligence (AI) and large language models (LLMs), and the availability of services that make them accessible, have led the general public to begin incorporating them into everyday life. The extended reality (XR) community has also sought to integrate LLMs, particularly in the form of conversational agents, to enhance user experience and task efficiency. When interacting with such conversational agents, users may easily disclose sensitive information due to the naturalistic flow of the conversations, and combining such conversational data with fine-grained sensor data may lead to novel privacy issues. To address these issues, a user-centric understanding of technology acceptance and concerns is essential. Therefore, to this end, we conducted a large-scale crowdsourcing study with 1036 participants, examining user decision-making processes regarding LLM-powered conversational agents in XR, across factors of XR setting type, speech interaction type, and data processing location. We found that while users generally accept these technologies, they express concerns related to security, privacy, social implications, and trust. Our results suggest that familiarity plays a crucial role, as daily generative AI use is associated with greater acceptance. In contrast, previous ownership of XR devices is linked to less acceptance, possibly due to existing familiarity with the settings. We also found that men report higher acceptance with fewer concerns than women. Regarding data type sensitivity, location data elicited the most significant concern, while body temperature and virtual object states were considered least sensitive. Overall, our study highlights the importance of practitioners effectively communicating their measures to users, who may remain distrustful. We conclude with implications and recommendations for LLM-powered XR.

 arXiv:2512.15343v1 Announce Type: cross
Abstract: The rapid development of generative artificial intelligence (AI) and large language models (LLMs), and the availability of services that make them accessible, have led the general public to begin incorporating them into everyday life. The extended reality (XR) community has also sought to integrate LLMs, particularly in the form of conversational agents, to enhance user experience and task efficiency. When interacting with such conversational agents, users may easily disclose sensitive information due to the naturalistic flow of the conversations, and combining such conversational data with fine-grained sensor data may lead to novel privacy issues. To address these issues, a user-centric understanding of technology acceptance and concerns is essential. Therefore, to this end, we conducted a large-scale crowdsourcing study with 1036 participants, examining user decision-making processes regarding LLM-powered conversational agents in XR, across factors of XR setting type, speech interaction type, and data processing location. We found that while users generally accept these technologies, they express concerns related to security, privacy, social implications, and trust. Our results suggest that familiarity plays a crucial role, as daily generative AI use is associated with greater acceptance. In contrast, previous ownership of XR devices is linked to less acceptance, possibly due to existing familiarity with the settings. We also found that men report higher acceptance with fewer concerns than women. Regarding data type sensitivity, location data elicited the most significant concern, while body temperature and virtual object states were considered least sensitive. Overall, our study highlights the importance of practitioners effectively communicating their measures to users, who may remain distrustful. We conclude with implications and recommendations for LLM-powered XR. Read More  

News
AI News & Insights Featured Image

On Assessing the Relevance of Code Reviews Authored by Generative Models AI updates on arXiv.org

On Assessing the Relevance of Code Reviews Authored by Generative Modelscs.AI updates on arXiv.org arXiv:2512.15466v1 Announce Type: cross
Abstract: The use of large language models like ChatGPT in code review offers promising efficiency gains but also raises concerns about correctness and safety. Existing evaluation methods for code review generation either rely on automatic comparisons to a single ground truth, which fails to capture the variability of human perspectives, or on subjective assessments of “usefulness”, a highly ambiguous concept. We propose a novel evaluation approach based on what we call multi-subjective ranking. Using a dataset of 280 self-contained code review requests and corresponding comments from CodeReview StackExchange, multiple human judges ranked the quality of ChatGPT-generated comments alongside the top human responses from the platform. Results show that ChatGPT’s comments were ranked significantly better than human ones, even surpassing StackExchange’s accepted answers. Going further, our proposed method motivates and enables more meaningful assessments of generative AI’s performance in code review, while also raising awareness of potential risks of unchecked integration into review processes.

 arXiv:2512.15466v1 Announce Type: cross
Abstract: The use of large language models like ChatGPT in code review offers promising efficiency gains but also raises concerns about correctness and safety. Existing evaluation methods for code review generation either rely on automatic comparisons to a single ground truth, which fails to capture the variability of human perspectives, or on subjective assessments of “usefulness”, a highly ambiguous concept. We propose a novel evaluation approach based on what we call multi-subjective ranking. Using a dataset of 280 self-contained code review requests and corresponding comments from CodeReview StackExchange, multiple human judges ranked the quality of ChatGPT-generated comments alongside the top human responses from the platform. Results show that ChatGPT’s comments were ranked significantly better than human ones, even surpassing StackExchange’s accepted answers. Going further, our proposed method motivates and enables more meaningful assessments of generative AI’s performance in code review, while also raising awareness of potential risks of unchecked integration into review processes. Read More  

News
AI News & Insights Featured Image

Control-Augmented Autoregressive Diffusion for Data Assimilation AI updates on arXiv.org

Control-Augmented Autoregressive Diffusion for Data Assimilationcs.AI updates on arXiv.org arXiv:2510.06637v2 Announce Type: replace-cross
Abstract: Despite recent advances in test-time scaling and finetuning of diffusion models, guidance in Auto-Regressive Diffusion Models (ARDMs) remains underexplored. We introduce an amortized framework that augments a pretrained ARDM with a lightweight controller network, trained offline by previewing future rollouts to output stepwise controls that anticipate upcoming observations under a terminal-cost objective. Our approach is motivated by viewing guided generation as an entropy-regularized stochastic optimal control problem over ARDM trajectories: we learn a reusable policy that injects small control corrections inside each denoising sub-step while remaining anchored to the pretrained dynamics. We evaluate this framework in the context of data assimilation (DA) for chaotic spatiotemporal partial differential equations (PDEs), where existing methods can be computationally prohibitive and prone to forecast drift under sparse observations. At inference, DA reduces to a single causal forward rollout with on-the-fly corrections, requiring neither adjoint computations nor gradient-based optimization, and yields an order-of-magnitude speedup over strong diffusion-based DA baselines. Across two canonical PDEs and six observation regimes, our method consistently improves stability, accuracy, and physics-aware fidelity over state-of-the-art baselines. We will release code and checkpoints publicly.

 arXiv:2510.06637v2 Announce Type: replace-cross
Abstract: Despite recent advances in test-time scaling and finetuning of diffusion models, guidance in Auto-Regressive Diffusion Models (ARDMs) remains underexplored. We introduce an amortized framework that augments a pretrained ARDM with a lightweight controller network, trained offline by previewing future rollouts to output stepwise controls that anticipate upcoming observations under a terminal-cost objective. Our approach is motivated by viewing guided generation as an entropy-regularized stochastic optimal control problem over ARDM trajectories: we learn a reusable policy that injects small control corrections inside each denoising sub-step while remaining anchored to the pretrained dynamics. We evaluate this framework in the context of data assimilation (DA) for chaotic spatiotemporal partial differential equations (PDEs), where existing methods can be computationally prohibitive and prone to forecast drift under sparse observations. At inference, DA reduces to a single causal forward rollout with on-the-fly corrections, requiring neither adjoint computations nor gradient-based optimization, and yields an order-of-magnitude speedup over strong diffusion-based DA baselines. Across two canonical PDEs and six observation regimes, our method consistently improves stability, accuracy, and physics-aware fidelity over state-of-the-art baselines. We will release code and checkpoints publicly. Read More