Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

News
AI News & Insights Featured Image

How to Build Guardrails for Effective Agents Towards Data Science

How to Build Guardrails for Effective AgentsTowards Data Science Learn how to set up effective guardrails to enforce desired behaviour from your agents
The post How to Build Guardrails for Effective Agents appeared first on Towards Data Science.

 Learn how to set up effective guardrails to enforce desired behaviour from your agents
The post How to Build Guardrails for Effective Agents appeared first on Towards Data Science. Read More  

News
AI News & Insights Featured Image

What Layers When: Learning to Skip Compute in LLMs with Residual Gates cs.AI updates on arXiv.org

What Layers When: Learning to Skip Compute in LLMs with Residual Gatescs.AI updates on arXiv.org arXiv:2510.13876v2 Announce Type: replace-cross
Abstract: We introduce GateSkip, a simple residual-stream gating mechanism that enables token-wise layer skipping in decoder-only LMs. Each Attention/MLP branch is equipped with a sigmoid-linear gate that condenses the branch’s output before it re-enters the residual stream. During inference we rank tokens by the gate values and skip low-importance ones using a per-layer budget. While early-exit or router-based Mixture-of-Depths models are known to be unstable and need extensive retraining, our smooth, differentiable gates fine-tune stably on top of pretrained models. On long-form reasoning, we save up to 15% compute while retaining over 90% of baseline accuracy. For increasingly larger models, this tradeoff improves drastically. On instruction-tuned models we see accuracy gains at full compute and match baseline quality near 50% savings. The learned gates give insight into transformer information flow (e.g., BOS tokens act as anchors), and the method combines easily with quantization, pruning, and self-speculative decoding.

 arXiv:2510.13876v2 Announce Type: replace-cross
Abstract: We introduce GateSkip, a simple residual-stream gating mechanism that enables token-wise layer skipping in decoder-only LMs. Each Attention/MLP branch is equipped with a sigmoid-linear gate that condenses the branch’s output before it re-enters the residual stream. During inference we rank tokens by the gate values and skip low-importance ones using a per-layer budget. While early-exit or router-based Mixture-of-Depths models are known to be unstable and need extensive retraining, our smooth, differentiable gates fine-tune stably on top of pretrained models. On long-form reasoning, we save up to 15% compute while retaining over 90% of baseline accuracy. For increasingly larger models, this tradeoff improves drastically. On instruction-tuned models we see accuracy gains at full compute and match baseline quality near 50% savings. The learned gates give insight into transformer information flow (e.g., BOS tokens act as anchors), and the method combines easily with quantization, pruning, and self-speculative decoding. Read More  

News
AI News & Insights Featured Image

Ascent Fails to Forget cs.AI updates on arXiv.org

Ascent Fails to Forgetcs.AI updates on arXiv.org arXiv:2509.26427v2 Announce Type: replace-cross
Abstract: Contrary to common belief, we show that gradient ascent-based unconstrained optimization methods frequently fail to perform machine unlearning, a phenomenon we attribute to the inherent statistical dependence between the forget and retain data sets. This dependence, which can manifest itself even as simple correlations, undermines the misconception that these sets can be independently manipulated during unlearning. We provide empirical and theoretical evidence showing these methods often fail precisely due to this overlooked relationship. For random forget sets, this dependence means that degrading forget set metrics (which, for a retrained model, should mirror test set metrics) inevitably harms overall test performance. Going beyond random sets, we consider logistic regression as an instructive example where a critical failure mode emerges: inter-set dependence causes gradient descent-ascent iterations to progressively diverge from the ideal retrained model. Strikingly, these methods can converge to solutions that are not only far from the retrained ideal but are potentially even further from it than the original model itself, rendering the unlearning process actively detrimental. A toy example further illustrates how this dependence can trap models in inferior local minima, inescapable via finetuning. Our findings highlight that the presence of such statistical dependencies, even when manifest only as correlations, can be sufficient for ascent-based unlearning to fail. Our theoretical insights are corroborated by experiments on complex neural networks, demonstrating that these methods do not perform as expected in practice due to this unaddressed statistical interplay.

 arXiv:2509.26427v2 Announce Type: replace-cross
Abstract: Contrary to common belief, we show that gradient ascent-based unconstrained optimization methods frequently fail to perform machine unlearning, a phenomenon we attribute to the inherent statistical dependence between the forget and retain data sets. This dependence, which can manifest itself even as simple correlations, undermines the misconception that these sets can be independently manipulated during unlearning. We provide empirical and theoretical evidence showing these methods often fail precisely due to this overlooked relationship. For random forget sets, this dependence means that degrading forget set metrics (which, for a retrained model, should mirror test set metrics) inevitably harms overall test performance. Going beyond random sets, we consider logistic regression as an instructive example where a critical failure mode emerges: inter-set dependence causes gradient descent-ascent iterations to progressively diverge from the ideal retrained model. Strikingly, these methods can converge to solutions that are not only far from the retrained ideal but are potentially even further from it than the original model itself, rendering the unlearning process actively detrimental. A toy example further illustrates how this dependence can trap models in inferior local minima, inescapable via finetuning. Our findings highlight that the presence of such statistical dependencies, even when manifest only as correlations, can be sufficient for ascent-based unlearning to fail. Our theoretical insights are corroborated by experiments on complex neural networks, demonstrating that these methods do not perform as expected in practice due to this unaddressed statistical interplay. Read More  

News
AI News & Insights Featured Image

CLASP: General-Purpose Clothes Manipulation with Semantic Keypoints cs.AI updates on arXiv.org

CLASP: General-Purpose Clothes Manipulation with Semantic Keypointscs.AI updates on arXiv.org arXiv:2507.19983v2 Announce Type: replace-cross
Abstract: Clothes manipulation, such as folding or hanging, is a critical capability for home service robots. Despite recent advances, most existing methods remain limited to specific clothes types and tasks, due to the complex, high-dimensional geometry of clothes. This paper presents CLothes mAnipulation with Semantic keyPoints (CLASP), which aims at general-purpose clothes manipulation over diverse clothes types, T-shirts, shorts, skirts, long dresses, …, as well as different tasks, folding, flattening, hanging, …. The core idea of CLASP is semantic keypoints-e.g., ”left sleeve” and ”right shoulder”-a sparse spatial-semantic representation, salient for both perception and action. Semantic keypoints of clothes can be reliably extracted from RGB-D images and provide an effective representation for a wide range of clothes manipulation policies. CLASP uses semantic keypoints as an intermediate representation to connect high-level task planning and low-level action execution. At the high level, it exploits vision language models (VLMs) to predict task plans over the semantic keypoints. At the low level, it executes the plans with the help of a set of pre-built manipulation skills conditioned on the keypoints. Extensive simulation experiments show that CLASP outperforms state-of-the-art baseline methods on multiple tasks across diverse clothes types, demonstrating strong performance and generalization. Further experiments with a Franka dual-arm system on four distinct tasks-folding, flattening, hanging, and placing-confirm CLASP’s performance on real-life clothes manipulation.

 arXiv:2507.19983v2 Announce Type: replace-cross
Abstract: Clothes manipulation, such as folding or hanging, is a critical capability for home service robots. Despite recent advances, most existing methods remain limited to specific clothes types and tasks, due to the complex, high-dimensional geometry of clothes. This paper presents CLothes mAnipulation with Semantic keyPoints (CLASP), which aims at general-purpose clothes manipulation over diverse clothes types, T-shirts, shorts, skirts, long dresses, …, as well as different tasks, folding, flattening, hanging, …. The core idea of CLASP is semantic keypoints-e.g., ”left sleeve” and ”right shoulder”-a sparse spatial-semantic representation, salient for both perception and action. Semantic keypoints of clothes can be reliably extracted from RGB-D images and provide an effective representation for a wide range of clothes manipulation policies. CLASP uses semantic keypoints as an intermediate representation to connect high-level task planning and low-level action execution. At the high level, it exploits vision language models (VLMs) to predict task plans over the semantic keypoints. At the low level, it executes the plans with the help of a set of pre-built manipulation skills conditioned on the keypoints. Extensive simulation experiments show that CLASP outperforms state-of-the-art baseline methods on multiple tasks across diverse clothes types, demonstrating strong performance and generalization. Further experiments with a Franka dual-arm system on four distinct tasks-folding, flattening, hanging, and placing-confirm CLASP’s performance on real-life clothes manipulation. Read More  

News
AI News & Insights Featured Image

EmoSphere-SER: Enhancing Speech Emotion Recognition Through Spherical Representation with Auxiliary Classification cs.AI updates on arXiv.org

EmoSphere-SER: Enhancing Speech Emotion Recognition Through Spherical Representation with Auxiliary Classificationcs.AI updates on arXiv.org arXiv:2505.19693v2 Announce Type: replace-cross
Abstract: Speech emotion recognition predicts a speaker’s emotional state from speech signals using discrete labels or continuous dimensions such as arousal, valence, and dominance (VAD). We propose EmoSphere-SER, a joint model that integrates spherical VAD region classification to guide VAD regression for improved emotion prediction. In our framework, VAD values are transformed into spherical coordinates that are divided into multiple spherical regions, and an auxiliary classification task predicts which spherical region each point belongs to, guiding the regression process. Additionally, we incorporate a dynamic weighting scheme and a style pooling layer with multi-head self-attention to capture spectral and temporal dynamics, further boosting performance. This combined training strategy reinforces structured learning and improves prediction consistency. Experimental results show that our approach exceeds baseline methods, confirming the validity of the proposed framework.

 arXiv:2505.19693v2 Announce Type: replace-cross
Abstract: Speech emotion recognition predicts a speaker’s emotional state from speech signals using discrete labels or continuous dimensions such as arousal, valence, and dominance (VAD). We propose EmoSphere-SER, a joint model that integrates spherical VAD region classification to guide VAD regression for improved emotion prediction. In our framework, VAD values are transformed into spherical coordinates that are divided into multiple spherical regions, and an auxiliary classification task predicts which spherical region each point belongs to, guiding the regression process. Additionally, we incorporate a dynamic weighting scheme and a style pooling layer with multi-head self-attention to capture spectral and temporal dynamics, further boosting performance. This combined training strategy reinforces structured learning and improves prediction consistency. Experimental results show that our approach exceeds baseline methods, confirming the validity of the proposed framework. Read More  

News
AI News & Insights Featured Image

Flexora: Flexible Low Rank Adaptation for Large Language Models cs.AI updates on arXiv.org

Flexora: Flexible Low Rank Adaptation for Large Language Modelscs.AI updates on arXiv.org arXiv:2408.10774v5 Announce Type: replace
Abstract: Large Language Models (LLMs) are driving advancements in artificial intelligence by increasing the scale of model parameters, which has significantly enhanced generalization ability and unlocked new capabilities in practice. However, their performance in specific downstream tasks is usually hindered by their knowledge boundaries on these tasks. Thus, fine-tuning techniques, especially the widely used Low-Rank Adaptation (LoRA) method, have been introduced to expand the boundaries on these tasks, whereas LoRA would underperform on certain tasks owing to its potential overfitting on these tasks. To overcome this overfitting and improve the performance of LoRA, we propose the flexible low rank adaptation (Flexora) method to automatically and flexibly select the most important layers needing to be fine-tuned to achieve the best performance on different downstream tasks. Specifically, Flexora firstly frames this layer selection problem as a well-defined hyperparameter optimization (HPO) problem, then addresses it using the unrolled differentiation (UD) method, and finally selects the most useful layers based on the optimized hyperparameters. Our extensive experiments on many pretrained models and natural language tasks show that Flexora is able to consistently improve over the existing baselines, indicating the effectiveness of our Flexora in practice. We additionally provide insightful theoretical results and many ablation studies to deliver a comprehensive understanding of our Flexora.

 arXiv:2408.10774v5 Announce Type: replace
Abstract: Large Language Models (LLMs) are driving advancements in artificial intelligence by increasing the scale of model parameters, which has significantly enhanced generalization ability and unlocked new capabilities in practice. However, their performance in specific downstream tasks is usually hindered by their knowledge boundaries on these tasks. Thus, fine-tuning techniques, especially the widely used Low-Rank Adaptation (LoRA) method, have been introduced to expand the boundaries on these tasks, whereas LoRA would underperform on certain tasks owing to its potential overfitting on these tasks. To overcome this overfitting and improve the performance of LoRA, we propose the flexible low rank adaptation (Flexora) method to automatically and flexibly select the most important layers needing to be fine-tuned to achieve the best performance on different downstream tasks. Specifically, Flexora firstly frames this layer selection problem as a well-defined hyperparameter optimization (HPO) problem, then addresses it using the unrolled differentiation (UD) method, and finally selects the most useful layers based on the optimized hyperparameters. Our extensive experiments on many pretrained models and natural language tasks show that Flexora is able to consistently improve over the existing baselines, indicating the effectiveness of our Flexora in practice. We additionally provide insightful theoretical results and many ablation studies to deliver a comprehensive understanding of our Flexora. Read More  

News
AI News & Insights Featured Image

AUGUSTUS: An LLM-Driven Multimodal Agent System with Contextualized User Memory cs.AI updates on arXiv.org

AUGUSTUS: An LLM-Driven Multimodal Agent System with Contextualized User Memorycs.AI updates on arXiv.org arXiv:2510.15261v1 Announce Type: new
Abstract: Riding on the success of LLMs with retrieval-augmented generation (RAG), there has been a growing interest in augmenting agent systems with external memory databases. However, the existing systems focus on storing text information in their memory, ignoring the importance of multimodal signals. Motivated by the multimodal nature of human memory, we present AUGUSTUS, a multimodal agent system aligned with the ideas of human memory in cognitive science. Technically, our system consists of 4 stages connected in a loop: (i) encode: understanding the inputs; (ii) store in memory: saving important information; (iii) retrieve: searching for relevant context from memory; and (iv) act: perform the task. Unlike existing systems that use vector databases, we propose conceptualizing information into semantic tags and associating the tags with their context to store them in a graph-structured multimodal contextual memory for efficient concept-driven retrieval. Our system outperforms the traditional multimodal RAG approach while being 3.5 times faster for ImageNet classification and outperforming MemGPT on the MSC benchmark.

 arXiv:2510.15261v1 Announce Type: new
Abstract: Riding on the success of LLMs with retrieval-augmented generation (RAG), there has been a growing interest in augmenting agent systems with external memory databases. However, the existing systems focus on storing text information in their memory, ignoring the importance of multimodal signals. Motivated by the multimodal nature of human memory, we present AUGUSTUS, a multimodal agent system aligned with the ideas of human memory in cognitive science. Technically, our system consists of 4 stages connected in a loop: (i) encode: understanding the inputs; (ii) store in memory: saving important information; (iii) retrieve: searching for relevant context from memory; and (iv) act: perform the task. Unlike existing systems that use vector databases, we propose conceptualizing information into semantic tags and associating the tags with their context to store them in a graph-structured multimodal contextual memory for efficient concept-driven retrieval. Our system outperforms the traditional multimodal RAG approach while being 3.5 times faster for ImageNet classification and outperforming MemGPT on the MSC benchmark. Read More  

News
AI News & Insights Featured Image

Experience-Driven Exploration for Efficient API-Free AI Agents cs.AI updates on arXiv.org

Experience-Driven Exploration for Efficient API-Free AI Agentscs.AI updates on arXiv.org arXiv:2510.15259v1 Announce Type: new
Abstract: Most existing software lacks accessible Application Programming Interfaces (APIs), requiring agents to operate solely through pixel-based Graphical User Interfaces (GUIs). In this API-free setting, large language model (LLM)-based agents face severe efficiency bottlenecks: limited to local visual experiences, they make myopic decisions and rely on inefficient trial-and-error, hindering both skill acquisition and long-term planning. To address these challenges, we propose KG-Agent, an experience-driven learning framework that structures an agent’s raw pixel-level interactions into a persistent State-Action Knowledge Graph (SA-KG). KG-Agent overcomes inefficient exploration by linking functionally similar but visually distinct GUI states, forming a rich neighborhood of experience that enables the agent to generalize from a diverse set of historical strategies. To support long-horizon reasoning, we design a hybrid intrinsic reward mechanism based on the graph topology, combining a state value reward for exploiting known high-value pathways with a novelty reward that encourages targeted exploration. This approach decouples strategic planning from pure discovery, allowing the agent to effectively value setup actions with delayed gratification. We evaluate KG-Agent in two complex, open-ended GUI-based decision-making environments (Civilization V and Slay the Spire), demonstrating significant improvements in exploration efficiency and strategic depth over the state-of-the-art methods.

 arXiv:2510.15259v1 Announce Type: new
Abstract: Most existing software lacks accessible Application Programming Interfaces (APIs), requiring agents to operate solely through pixel-based Graphical User Interfaces (GUIs). In this API-free setting, large language model (LLM)-based agents face severe efficiency bottlenecks: limited to local visual experiences, they make myopic decisions and rely on inefficient trial-and-error, hindering both skill acquisition and long-term planning. To address these challenges, we propose KG-Agent, an experience-driven learning framework that structures an agent’s raw pixel-level interactions into a persistent State-Action Knowledge Graph (SA-KG). KG-Agent overcomes inefficient exploration by linking functionally similar but visually distinct GUI states, forming a rich neighborhood of experience that enables the agent to generalize from a diverse set of historical strategies. To support long-horizon reasoning, we design a hybrid intrinsic reward mechanism based on the graph topology, combining a state value reward for exploiting known high-value pathways with a novelty reward that encourages targeted exploration. This approach decouples strategic planning from pure discovery, allowing the agent to effectively value setup actions with delayed gratification. We evaluate KG-Agent in two complex, open-ended GUI-based decision-making environments (Civilization V and Slay the Spire), demonstrating significant improvements in exploration efficiency and strategic depth over the state-of-the-art methods. Read More  

News
AI News & Insights Featured Image

HumorDB: Can AI understand graphical humor? cs.AI updates on arXiv.org

HumorDB: Can AI understand graphical humor?cs.AI updates on arXiv.org arXiv:2406.13564v3 Announce Type: replace-cross
Abstract: Despite significant advancements in image segmentation and object detection, understanding complex scenes remains a significant challenge. Here, we focus on graphical humor as a paradigmatic example of image interpretation that requires elucidating the interaction of different scene elements in the context of prior cognitive knowledge. This paper introduces textbf{HumorDB}, a novel, controlled, and carefully curated dataset designed to evaluate and advance visual humor understanding by AI systems. The dataset comprises diverse images spanning photos, cartoons, sketches, and AI-generated content, including minimally contrastive pairs where subtle edits differentiate between humorous and non-humorous versions. We evaluate humans, state-of-the-art vision models, and large vision-language models on three tasks: binary humor classification, funniness rating prediction, and pairwise humor comparison. The results reveal a gap between current AI systems and human-level humor understanding. While pretrained vision-language models perform better than vision-only models, they still struggle with abstract sketches and subtle humor cues. Analysis of attention maps shows that even when models correctly classify humorous images, they often fail to focus on the precise regions that make the image funny. Preliminary mechanistic interpretability studies and evaluation of model explanations provide initial insights into how different architectures process humor. Our results identify promising trends and current limitations, suggesting that an effective understanding of visual humor requires sophisticated architectures capable of detecting subtle contextual features and bridging the gap between visual perception and abstract reasoning. All the code and data are available here: href{https://github.com/kreimanlab/HumorDB}{https://github.com/kreimanlab/HumorDB}

 arXiv:2406.13564v3 Announce Type: replace-cross
Abstract: Despite significant advancements in image segmentation and object detection, understanding complex scenes remains a significant challenge. Here, we focus on graphical humor as a paradigmatic example of image interpretation that requires elucidating the interaction of different scene elements in the context of prior cognitive knowledge. This paper introduces textbf{HumorDB}, a novel, controlled, and carefully curated dataset designed to evaluate and advance visual humor understanding by AI systems. The dataset comprises diverse images spanning photos, cartoons, sketches, and AI-generated content, including minimally contrastive pairs where subtle edits differentiate between humorous and non-humorous versions. We evaluate humans, state-of-the-art vision models, and large vision-language models on three tasks: binary humor classification, funniness rating prediction, and pairwise humor comparison. The results reveal a gap between current AI systems and human-level humor understanding. While pretrained vision-language models perform better than vision-only models, they still struggle with abstract sketches and subtle humor cues. Analysis of attention maps shows that even when models correctly classify humorous images, they often fail to focus on the precise regions that make the image funny. Preliminary mechanistic interpretability studies and evaluation of model explanations provide initial insights into how different architectures process humor. Our results identify promising trends and current limitations, suggesting that an effective understanding of visual humor requires sophisticated architectures capable of detecting subtle contextual features and bridging the gap between visual perception and abstract reasoning. All the code and data are available here: href{https://github.com/kreimanlab/HumorDB}{https://github.com/kreimanlab/HumorDB} Read More  

News
AI News & Insights Featured Image

OmniVinci: Enhancing Architecture and Data for Omni-Modal Understanding LLM cs.AI updates on arXiv.org

OmniVinci: Enhancing Architecture and Data for Omni-Modal Understanding LLMcs.AI updates on arXiv.org arXiv:2510.15870v1 Announce Type: cross
Abstract: Advancing machine intelligence requires developing the ability to perceive across multiple modalities, much as humans sense the world. We introduce OmniVinci, an initiative to build a strong, open-source, omni-modal LLM. We carefully study the design choices across model architecture and data curation. For model architecture, we present three key innovations: (i) OmniAlignNet for strengthening alignment between vision and audio embeddings in a shared omni-modal latent space; (ii) Temporal Embedding Grouping for capturing relative temporal alignment between vision and audio signals; and (iii) Constrained Rotary Time Embedding for encoding absolute temporal information in omni-modal embeddings. We introduce a curation and synthesis pipeline that generates 24M single-modal and omni-modal conversations. We find that modalities reinforce one another in both perception and reasoning. Our model, OmniVinci, outperforms Qwen2.5-Omni with +19.05 on DailyOmni (cross-modal understanding), +1.7 on MMAR (audio), and +3.9 on Video-MME (vision), while using just 0.2T training tokens – a 6 times reduction compared to Qwen2.5-Omni’s 1.2T. We finally demonstrate omni-modal advantages in downstream applications spanning robotics, medical AI, and smart factory.

 arXiv:2510.15870v1 Announce Type: cross
Abstract: Advancing machine intelligence requires developing the ability to perceive across multiple modalities, much as humans sense the world. We introduce OmniVinci, an initiative to build a strong, open-source, omni-modal LLM. We carefully study the design choices across model architecture and data curation. For model architecture, we present three key innovations: (i) OmniAlignNet for strengthening alignment between vision and audio embeddings in a shared omni-modal latent space; (ii) Temporal Embedding Grouping for capturing relative temporal alignment between vision and audio signals; and (iii) Constrained Rotary Time Embedding for encoding absolute temporal information in omni-modal embeddings. We introduce a curation and synthesis pipeline that generates 24M single-modal and omni-modal conversations. We find that modalities reinforce one another in both perception and reasoning. Our model, OmniVinci, outperforms Qwen2.5-Omni with +19.05 on DailyOmni (cross-modal understanding), +1.7 on MMAR (audio), and +3.9 on Video-MME (vision), while using just 0.2T training tokens – a 6 times reduction compared to Qwen2.5-Omni’s 1.2T. We finally demonstrate omni-modal advantages in downstream applications spanning robotics, medical AI, and smart factory. Read More