Multiple threat actors are compromising Microsoft 365 accounts in phishing attacks that leverage the OAuth device code authorization mechanism. […] Read More
The Nigerian police have arrested three individuals linked to targeted Microsoft 365 cyberattacks via Raccoon0365 phishing-as-a-service. […] Read More
Microsoft Teams is experiencing issues, with thousands reporting problems sending messages, including delays. […] Read More
(c) SANS Internet Storm Center. https://isc.sans.edu Creative Commons Attribution-Noncommercial 3.0 United States License. Read More
This month’s extended security update for Windows 11 broke Message Queuing (MSMQ), which is typically used by enterprises to manage background tasks. […] Read More
Authorities in Nigeria have announced the arrest of three “high-profile internet fraud suspects” who are alleged to have been involved in phishing attacks targeting major corporations, including the main developer behind the RaccoonO365 phishing-as-a-service (PhaaS) scheme. The Nigeria Police Force National Cybercrime Centre (NPF–NCCC) said investigations conducted in collaboration with Read More
WatchGuard has released fixes to address a critical security flaw in Fireware OS that it said has been exploited in real-world attacks. Tracked as CVE-2025-14733 (CVSS score: 9.3), the vulnerability has been described as a case of out-of-bounds write affecting the iked process that could allow a remote unauthenticated attacker to execute arbitrary code. “This […]
Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contaminationcs.AI updates on arXiv.org arXiv:2507.10532v3 Announce Type: replace-cross
Abstract: Reasoning in large language models has long been a central research focus, and recent studies employing reinforcement learning (RL) have introduced diverse methods that yield substantial performance gains with minimal or even no external supervision. Surprisingly, some studies even suggest that random or incorrect reward signals can enhance performance. However, these breakthroughs are predominantly observed for the mathematically strong Qwen2.5 series on benchmarks such as MATH-500, AMC, and AIME, and seldom transfer to models like Llama, which warrants a more in-depth investigation. In this work, our empirical analysis reveals that pre-training on massive web-scale corpora leaves Qwen2.5 susceptible to data contamination in widely used benchmarks. Consequently, conclusions derived from contaminated benchmarks on Qwen2.5 series may be unreliable. To obtain trustworthy evaluation results, we introduce a generator that creates fully clean arithmetic problems of arbitrary length and difficulty, dubbed RandomCalculation. Using this leakage-free dataset, we show that only accurate reward signals yield steady improvements that surpass the base model’s performance boundary in mathematical reasoning, whereas random or incorrect rewards do not. Moreover, we conduct more fine-grained analyses to elucidate the factors underlying the different performance observed on the MATH-500 and RandomCalculation benchmarks. Consequently, we recommend that future studies evaluate models on uncontaminated benchmarks and, when feasible, test various model series to ensure trustworthy conclusions about RL and related methods.
arXiv:2507.10532v3 Announce Type: replace-cross
Abstract: Reasoning in large language models has long been a central research focus, and recent studies employing reinforcement learning (RL) have introduced diverse methods that yield substantial performance gains with minimal or even no external supervision. Surprisingly, some studies even suggest that random or incorrect reward signals can enhance performance. However, these breakthroughs are predominantly observed for the mathematically strong Qwen2.5 series on benchmarks such as MATH-500, AMC, and AIME, and seldom transfer to models like Llama, which warrants a more in-depth investigation. In this work, our empirical analysis reveals that pre-training on massive web-scale corpora leaves Qwen2.5 susceptible to data contamination in widely used benchmarks. Consequently, conclusions derived from contaminated benchmarks on Qwen2.5 series may be unreliable. To obtain trustworthy evaluation results, we introduce a generator that creates fully clean arithmetic problems of arbitrary length and difficulty, dubbed RandomCalculation. Using this leakage-free dataset, we show that only accurate reward signals yield steady improvements that surpass the base model’s performance boundary in mathematical reasoning, whereas random or incorrect rewards do not. Moreover, we conduct more fine-grained analyses to elucidate the factors underlying the different performance observed on the MATH-500 and RandomCalculation benchmarks. Consequently, we recommend that future studies evaluate models on uncontaminated benchmarks and, when feasible, test various model series to ensure trustworthy conclusions about RL and related methods. Read More
Agentic AI for Integrated Sensing and Communication: Analysis, Framework, and Case Studycs.AI updates on arXiv.org arXiv:2512.15044v1 Announce Type: new
Abstract: Integrated sensing and communication (ISAC) has emerged as a key development direction in the sixth-generation (6G) era, which provides essential support for the collaborative sensing and communication of future intelligent networks. However, as wireless environments become increasingly dynamic and complex, ISAC systems require more intelligent processing and more autonomous operation to maintain efficiency and adaptability. Meanwhile, agentic artificial intelligence (AI) offers a feasible solution to address these challenges by enabling continuous perception-reasoning-action loops in dynamic environments to support intelligent, autonomous, and efficient operation for ISAC systems. As such, we delve into the application value and prospects of agentic AI in ISAC systems in this work. Firstly, we provide a comprehensive review of agentic AI and ISAC systems to demonstrate their key characteristics. Secondly, we show several common optimization approaches for ISAC systems and highlight the significant advantages of generative artificial intelligence (GenAI)-based agentic AI. Thirdly, we propose a novel agentic ISAC framework and prensent a case study to verify its superiority in optimizing ISAC performance. Finally, we clarify future research directions for agentic AI-based ISAC systems.
arXiv:2512.15044v1 Announce Type: new
Abstract: Integrated sensing and communication (ISAC) has emerged as a key development direction in the sixth-generation (6G) era, which provides essential support for the collaborative sensing and communication of future intelligent networks. However, as wireless environments become increasingly dynamic and complex, ISAC systems require more intelligent processing and more autonomous operation to maintain efficiency and adaptability. Meanwhile, agentic artificial intelligence (AI) offers a feasible solution to address these challenges by enabling continuous perception-reasoning-action loops in dynamic environments to support intelligent, autonomous, and efficient operation for ISAC systems. As such, we delve into the application value and prospects of agentic AI in ISAC systems in this work. Firstly, we provide a comprehensive review of agentic AI and ISAC systems to demonstrate their key characteristics. Secondly, we show several common optimization approaches for ISAC systems and highlight the significant advantages of generative artificial intelligence (GenAI)-based agentic AI. Thirdly, we propose a novel agentic ISAC framework and prensent a case study to verify its superiority in optimizing ISAC performance. Finally, we clarify future research directions for agentic AI-based ISAC systems. Read More
RPM-MCTS: Knowledge-Retrieval as Process Reward Model with Monte Carlo Tree Search for Code Generationcs.AI updates on arXiv.org arXiv:2511.19895v2 Announce Type: replace
Abstract: Tree search-based methods have made significant progress in enhancing the code generation capabilities of large language models. However, due to the difficulty in effectively evaluating intermediate algorithmic steps and the inability to locate and timely correct erroneous steps, these methods often generate incorrect code and incur increased computational costs. To tackle these problems, we propose RPM-MCTS, an effective method that utilizes Knowledge-Retrieval as Process Reward Model based on Monte Carlo Tree Search to evaluate intermediate algorithmic steps. By utilizing knowledge base retrieval, RPM-MCTS avoids the complex training of process reward models. During the expansion phase, similarity filtering is employed to remove redundant nodes, ensuring diversity in reasoning paths. Furthermore, our method utilizes sandbox execution feedback to locate erroneous algorithmic steps during generation, enabling timely and targeted corrections. Extensive experiments on four public code generation benchmarks demonstrate that RPM-MCTS outperforms current state-of-the-art methods while achieving an approximately 15% reduction in token consumption. Furthermore, full fine-tuning of the base model using the data constructed by RPM-MCTS significantly enhances its code capabilities.
arXiv:2511.19895v2 Announce Type: replace
Abstract: Tree search-based methods have made significant progress in enhancing the code generation capabilities of large language models. However, due to the difficulty in effectively evaluating intermediate algorithmic steps and the inability to locate and timely correct erroneous steps, these methods often generate incorrect code and incur increased computational costs. To tackle these problems, we propose RPM-MCTS, an effective method that utilizes Knowledge-Retrieval as Process Reward Model based on Monte Carlo Tree Search to evaluate intermediate algorithmic steps. By utilizing knowledge base retrieval, RPM-MCTS avoids the complex training of process reward models. During the expansion phase, similarity filtering is employed to remove redundant nodes, ensuring diversity in reasoning paths. Furthermore, our method utilizes sandbox execution feedback to locate erroneous algorithmic steps during generation, enabling timely and targeted corrections. Extensive experiments on four public code generation benchmarks demonstrate that RPM-MCTS outperforms current state-of-the-art methods while achieving an approximately 15% reduction in token consumption. Furthermore, full fine-tuning of the base model using the data constructed by RPM-MCTS significantly enhances its code capabilities. Read More