The FTC has finalized an order with General Motors, settling charges that it collected and sold the location and driving data of millions of drivers without consent. […] Read More
Experts disagree on whether the vulnerabilities in a programmable logic controller from Delta are a five-alarm fire or not much to worry over. Read More
It’s 2026, yet many SOCs are still operating the way they did years ago, using tools and processes designed for a very different threat landscape. Given the growth in volumes and complexity of cyber threats, outdated practices no longer fully support analysts’ needs, staggering investigations and incident response. Below are four limiting habits that may […]
FinVault: Benchmarking Financial Agent Safety in Execution-Grounded Environmentscs.AI updates on arXiv.org arXiv:2601.07853v1 Announce Type: cross
Abstract: Financial agents powered by large language models (LLMs) are increasingly deployed for investment analysis, risk assessment, and automated decision-making, where their abilities to plan, invoke tools, and manipulate mutable state introduce new security risks in high-stakes and highly regulated financial environments. However, existing safety evaluations largely focus on language-model-level content compliance or abstract agent settings, failing to capture execution-grounded risks arising from real operational workflows and state-changing actions. To bridge this gap, we propose FinVault, the first execution-grounded security benchmark for financial agents, comprising 31 regulatory case-driven sandbox scenarios with state-writable databases and explicit compliance constraints, together with 107 real-world vulnerabilities and 963 test cases that systematically cover prompt injection, jailbreaking, financially adapted attacks, as well as benign inputs for false-positive evaluation. Experimental results reveal that existing defense mechanisms remain ineffective in realistic financial agent settings, with average attack success rates (ASR) still reaching up to 50.0% on state-of-the-art models and remaining non-negligible even for the most robust systems (ASR 6.7%), highlighting the limited transferability of current safety designs and the need for stronger financial-specific defenses. Our code can be found at https://github.com/aifinlab/FinVault.
arXiv:2601.07853v1 Announce Type: cross
Abstract: Financial agents powered by large language models (LLMs) are increasingly deployed for investment analysis, risk assessment, and automated decision-making, where their abilities to plan, invoke tools, and manipulate mutable state introduce new security risks in high-stakes and highly regulated financial environments. However, existing safety evaluations largely focus on language-model-level content compliance or abstract agent settings, failing to capture execution-grounded risks arising from real operational workflows and state-changing actions. To bridge this gap, we propose FinVault, the first execution-grounded security benchmark for financial agents, comprising 31 regulatory case-driven sandbox scenarios with state-writable databases and explicit compliance constraints, together with 107 real-world vulnerabilities and 963 test cases that systematically cover prompt injection, jailbreaking, financially adapted attacks, as well as benign inputs for false-positive evaluation. Experimental results reveal that existing defense mechanisms remain ineffective in realistic financial agent settings, with average attack success rates (ASR) still reaching up to 50.0% on state-of-the-art models and remaining non-negligible even for the most robust systems (ASR 6.7%), highlighting the limited transferability of current safety designs and the need for stronger financial-specific defenses. Our code can be found at https://github.com/aifinlab/FinVault. Read More
Sherry: Hardware-Efficient 1.25-Bit Ternary Quantization via Fine-grained Sparsificationcs.AI updates on arXiv.org arXiv:2601.07892v1 Announce Type: cross
Abstract: The deployment of Large Language Models (LLMs) on resource-constrained edge devices is increasingly hindered by prohibitive memory and computational requirements. While ternary quantization offers a compelling solution by reducing weights to {-1, 0, +1}, current implementations suffer from a fundamental misalignment with commodity hardware. Most existing methods must choose between 2-bit aligned packing, which incurs significant bit wastage, or 1.67-bit irregular packing, which degrades inference speed. To resolve this tension, we propose Sherry, a hardware-efficient ternary quantization framework. Sherry introduces a 3:4 fine-grained sparsity that achieves a regularized 1.25-bit width by packing blocks of four weights into five bits, restoring power-of-two alignment. Furthermore, we identify weight trapping issue in sparse ternary training, which leads to representational collapse. To address this, Sherry introduces Arenas, an annealing residual synapse mechanism that maintains representational diversity during training. Empirical evaluations on LLaMA-3.2 across five benchmarks demonstrate that Sherry matches state-of-the-art ternary performance while significantly reducing model size. Notably, on an Intel i7-14700HX CPU, our 1B model achieves zero accuracy loss compared to SOTA baselines while providing 25% bit savings and 10% speed up. The code is available at https://github.com/Tencent/AngelSlim .
arXiv:2601.07892v1 Announce Type: cross
Abstract: The deployment of Large Language Models (LLMs) on resource-constrained edge devices is increasingly hindered by prohibitive memory and computational requirements. While ternary quantization offers a compelling solution by reducing weights to {-1, 0, +1}, current implementations suffer from a fundamental misalignment with commodity hardware. Most existing methods must choose between 2-bit aligned packing, which incurs significant bit wastage, or 1.67-bit irregular packing, which degrades inference speed. To resolve this tension, we propose Sherry, a hardware-efficient ternary quantization framework. Sherry introduces a 3:4 fine-grained sparsity that achieves a regularized 1.25-bit width by packing blocks of four weights into five bits, restoring power-of-two alignment. Furthermore, we identify weight trapping issue in sparse ternary training, which leads to representational collapse. To address this, Sherry introduces Arenas, an annealing residual synapse mechanism that maintains representational diversity during training. Empirical evaluations on LLaMA-3.2 across five benchmarks demonstrate that Sherry matches state-of-the-art ternary performance while significantly reducing model size. Notably, on an Intel i7-14700HX CPU, our 1B model achieves zero accuracy loss compared to SOTA baselines while providing 25% bit savings and 10% speed up. The code is available at https://github.com/Tencent/AngelSlim . Read More
NOVAK: Unified adaptive optimizer for deep neural networkscs.AI updates on arXiv.org arXiv:2601.07876v1 Announce Type: cross
Abstract: This work introduces NOVAK, a modular gradient-based optimization algorithm that integrates adaptive moment estimation, rectified learning-rate scheduling, decoupled weight regularization, multiple variants of Nesterov momentum, and lookahead synchronization into a unified, performance-oriented framework. NOVAK adopts a dual-mode architecture consisting of a streamlined fast path designed for production. The optimizer employs custom CUDA kernels that deliver substantial speedups (3-5 for critical operations) while preserving numerical stability under standard stochastic-optimization assumptions. We provide fully developed mathematical formulations for rectified adaptive learning rates, a memory-efficient lookahead mechanism that reduces overhead from O(2p) to O(p + p/k), and the synergistic coupling of complementary optimization components. Theoretical analysis establishes convergence guarantees and elucidates the stability and variance-reduction properties of the method. Extensive empirical evaluation on CIFAR-10, CIFAR-100, ImageNet, and ImageNette demonstrates NOVAK superiority over 14 contemporary optimizers, including Adam, AdamW, RAdam, Lion, and Adan. Across architectures such as ResNet-50, VGG-16, and ViT, NOVAK consistently achieves state-of-the-art accuracy, and exceptional robustness, attaining very high accuracy on VGG-16/ImageNette demonstrating superior architectural robustness compared to contemporary optimizers. The results highlight that NOVAKs architectural contributions (particularly rectification, decoupled decay, and hybrid momentum) are crucial for reliable training of deep plain networks lacking skip connections, addressing a long-standing limitation of existing adaptive optimization methods.
arXiv:2601.07876v1 Announce Type: cross
Abstract: This work introduces NOVAK, a modular gradient-based optimization algorithm that integrates adaptive moment estimation, rectified learning-rate scheduling, decoupled weight regularization, multiple variants of Nesterov momentum, and lookahead synchronization into a unified, performance-oriented framework. NOVAK adopts a dual-mode architecture consisting of a streamlined fast path designed for production. The optimizer employs custom CUDA kernels that deliver substantial speedups (3-5 for critical operations) while preserving numerical stability under standard stochastic-optimization assumptions. We provide fully developed mathematical formulations for rectified adaptive learning rates, a memory-efficient lookahead mechanism that reduces overhead from O(2p) to O(p + p/k), and the synergistic coupling of complementary optimization components. Theoretical analysis establishes convergence guarantees and elucidates the stability and variance-reduction properties of the method. Extensive empirical evaluation on CIFAR-10, CIFAR-100, ImageNet, and ImageNette demonstrates NOVAK superiority over 14 contemporary optimizers, including Adam, AdamW, RAdam, Lion, and Adan. Across architectures such as ResNet-50, VGG-16, and ViT, NOVAK consistently achieves state-of-the-art accuracy, and exceptional robustness, attaining very high accuracy on VGG-16/ImageNette demonstrating superior architectural robustness compared to contemporary optimizers. The results highlight that NOVAKs architectural contributions (particularly rectification, decoupled decay, and hybrid momentum) are crucial for reliable training of deep plain networks lacking skip connections, addressing a long-standing limitation of existing adaptive optimization methods. Read More
Prism: Towards Lowering User Cognitive Load in LLMs via Complex Intent Understandingcs.AI updates on arXiv.org arXiv:2601.08653v1 Announce Type: new
Abstract: Large Language Models are rapidly emerging as web-native interfaces to social platforms. On the social web, users frequently have ambiguous and dynamic goals, making complex intent understanding-rather than single-turn execution-the cornerstone of effective human-LLM collaboration. Existing approaches attempt to clarify user intents through sequential or parallel questioning, yet they fall short of addressing the core challenge: modeling the logical dependencies among clarification questions. Inspired by the Cognitive Load Theory, we propose Prism, a novel framework for complex intent understanding that enables logically coherent and efficient intent clarification. Prism comprises four tailored modules: a complex intent decomposition module, which decomposes user intents into smaller, well-structured elements and identifies logical dependencies among them; a logical clarification generation module, which organizes clarification questions based on these dependencies to ensure coherent, low-friction interactions; an intent-aware reward module, which evaluates the quality of clarification trajectories via an intent-aware reward function and leverages Monte Carlo Sample to simulate user-LLM interactions for large-scale,high-quality training data generation; and a self-evolved intent tuning module, which iteratively refines the LLM’s logical clarification capability through data-driven feedback and optimization. Prism consistently outperforms existing approaches across clarification interactions, intent execution, and cognitive load benchmarks. It achieves stateof-the-art logical consistency, reduces logical conflicts to 11.5%, increases user satisfaction by 14.4%, and decreases task completion time by 34.8%. All data and code are released.
arXiv:2601.08653v1 Announce Type: new
Abstract: Large Language Models are rapidly emerging as web-native interfaces to social platforms. On the social web, users frequently have ambiguous and dynamic goals, making complex intent understanding-rather than single-turn execution-the cornerstone of effective human-LLM collaboration. Existing approaches attempt to clarify user intents through sequential or parallel questioning, yet they fall short of addressing the core challenge: modeling the logical dependencies among clarification questions. Inspired by the Cognitive Load Theory, we propose Prism, a novel framework for complex intent understanding that enables logically coherent and efficient intent clarification. Prism comprises four tailored modules: a complex intent decomposition module, which decomposes user intents into smaller, well-structured elements and identifies logical dependencies among them; a logical clarification generation module, which organizes clarification questions based on these dependencies to ensure coherent, low-friction interactions; an intent-aware reward module, which evaluates the quality of clarification trajectories via an intent-aware reward function and leverages Monte Carlo Sample to simulate user-LLM interactions for large-scale,high-quality training data generation; and a self-evolved intent tuning module, which iteratively refines the LLM’s logical clarification capability through data-driven feedback and optimization. Prism consistently outperforms existing approaches across clarification interactions, intent execution, and cognitive load benchmarks. It achieves stateof-the-art logical consistency, reduces logical conflicts to 11.5%, increases user satisfaction by 14.4%, and decreases task completion time by 34.8%. All data and code are released. Read More
Coupled Diffusion-Encoder Models for Reconstruction of Flow Fieldscs.AI updates on arXiv.org arXiv:2601.07946v1 Announce Type: cross
Abstract: Data-driven flow-field reconstruction typically relies on autoencoder architectures that compress high-dimensional states into low-dimensional latent representations. However, classical approaches such as variational autoencoders (VAEs) often struggle to preserve the higher-order statistical structure of fluid flows when subjected to strong compression. We propose DiffCoder, a coupled framework that integrates a probabilistic diffusion model with a conventional convolutional ResNet encoder and trains both components end-to-end. The encoder compresses the flow field into a latent representation, while the diffusion model learns a generative prior over reconstructions conditioned on the compressed state. This design allows DiffCoder to recover distributional and spectral properties that are not strictly required for minimizing pointwise reconstruction loss but are critical for faithfully representing statistical properties of the flow field. We evaluate DiffCoder and VAE baselines across multiple model sizes and compression ratios on a challenging dataset of Kolmogorov flow fields. Under aggressive compression, DiffCoder significantly improves the spectral accuracy while VAEs exhibit substantial degradation. Although both methods show comparable relative L2 reconstruction error, DiffCoder better preserves the underlying distributional structure of the flow. At moderate compression levels, sufficiently large VAEs remain competitive, suggesting that diffusion-based priors provide the greatest benefit when information bottlenecks are severe. These results demonstrate that the generative decoding by diffusion offers a promising path toward compact, statistically consistent representations of complex flow fields.
arXiv:2601.07946v1 Announce Type: cross
Abstract: Data-driven flow-field reconstruction typically relies on autoencoder architectures that compress high-dimensional states into low-dimensional latent representations. However, classical approaches such as variational autoencoders (VAEs) often struggle to preserve the higher-order statistical structure of fluid flows when subjected to strong compression. We propose DiffCoder, a coupled framework that integrates a probabilistic diffusion model with a conventional convolutional ResNet encoder and trains both components end-to-end. The encoder compresses the flow field into a latent representation, while the diffusion model learns a generative prior over reconstructions conditioned on the compressed state. This design allows DiffCoder to recover distributional and spectral properties that are not strictly required for minimizing pointwise reconstruction loss but are critical for faithfully representing statistical properties of the flow field. We evaluate DiffCoder and VAE baselines across multiple model sizes and compression ratios on a challenging dataset of Kolmogorov flow fields. Under aggressive compression, DiffCoder significantly improves the spectral accuracy while VAEs exhibit substantial degradation. Although both methods show comparable relative L2 reconstruction error, DiffCoder better preserves the underlying distributional structure of the flow. At moderate compression levels, sufficiently large VAEs remain competitive, suggesting that diffusion-based priors provide the greatest benefit when information bottlenecks are severe. These results demonstrate that the generative decoding by diffusion offers a promising path toward compact, statistically consistent representations of complex flow fields. Read More
Evaluating the Ability of Explanations to Disambiguate Models in a Rashomon Setcs.AI updates on arXiv.org arXiv:2601.08703v1 Announce Type: new
Abstract: Explainable artificial intelligence (XAI) is concerned with producing explanations indicating the inner workings of models. For a Rashomon set of similarly performing models, explanations provide a way of disambiguating the behavior of individual models, helping select models for deployment. However explanations themselves can vary depending on the explainer used, and need to be evaluated. In the paper “Evaluating Model Explanations without Ground Truth”, we proposed three principles of explanation evaluation and a new method “AXE” to evaluate the quality of feature-importance explanations. We go on to illustrate how evaluation metrics that rely on comparing model explanations against ideal ground truth explanations obscure behavioral differences within a Rashomon set. Explanation evaluation aligned with our proposed principles would highlight these differences instead, helping select models from the Rashomon set. The selection of alternate models from the Rashomon set can maintain identical predictions but mislead explainers into generating false explanations, and mislead evaluation methods into considering the false explanations to be of high quality. AXE, our proposed explanation evaluation method, can detect this adversarial fairwashing of explanations with a 100% success rate. Unlike prior explanation evaluation strategies such as those based on model sensitivity or ground truth comparison, AXE can determine when protected attributes are used to make predictions.
arXiv:2601.08703v1 Announce Type: new
Abstract: Explainable artificial intelligence (XAI) is concerned with producing explanations indicating the inner workings of models. For a Rashomon set of similarly performing models, explanations provide a way of disambiguating the behavior of individual models, helping select models for deployment. However explanations themselves can vary depending on the explainer used, and need to be evaluated. In the paper “Evaluating Model Explanations without Ground Truth”, we proposed three principles of explanation evaluation and a new method “AXE” to evaluate the quality of feature-importance explanations. We go on to illustrate how evaluation metrics that rely on comparing model explanations against ideal ground truth explanations obscure behavioral differences within a Rashomon set. Explanation evaluation aligned with our proposed principles would highlight these differences instead, helping select models from the Rashomon set. The selection of alternate models from the Rashomon set can maintain identical predictions but mislead explainers into generating false explanations, and mislead evaluation methods into considering the false explanations to be of high quality. AXE, our proposed explanation evaluation method, can detect this adversarial fairwashing of explanations with a 100% success rate. Unlike prior explanation evaluation strategies such as those based on model sensitivity or ground truth comparison, AXE can determine when protected attributes are used to make predictions. Read More
Advancing ESG Intelligence: An Expert-level Agent and Comprehensive Benchmark for Sustainable Financecs.AI updates on arXiv.org arXiv:2601.08676v2 Announce Type: new
Abstract: Environmental, social, and governance (ESG) criteria are essential for evaluating corporate sustainability and ethical performance. However, professional ESG analysis is hindered by data fragmentation across unstructured sources, and existing large language models (LLMs) often struggle with the complex, multi-step workflows required for rigorous auditing. To address these limitations, we introduce ESGAgent, a hierarchical multi-agent system empowered by a specialized toolset, including retrieval augmentation, web search and domain-specific functions, to generate in-depth ESG analysis. Complementing this agentic system, we present a comprehensive three-level benchmark derived from 310 corporate sustainability reports, designed to evaluate capabilities ranging from atomic common-sense questions to the generation of integrated, in-depth analysis. Empirical evaluations demonstrate that ESGAgent outperforms state-of-the-art closed-source LLMs with an average accuracy of 84.15% on atomic question-answering tasks, and excels in professional report generation by integrating rich charts and verifiable references. These findings confirm the diagnostic value of our benchmark, establishing it as a vital testbed for assessing general and advanced agentic capabilities in high-stakes vertical domains.
arXiv:2601.08676v2 Announce Type: new
Abstract: Environmental, social, and governance (ESG) criteria are essential for evaluating corporate sustainability and ethical performance. However, professional ESG analysis is hindered by data fragmentation across unstructured sources, and existing large language models (LLMs) often struggle with the complex, multi-step workflows required for rigorous auditing. To address these limitations, we introduce ESGAgent, a hierarchical multi-agent system empowered by a specialized toolset, including retrieval augmentation, web search and domain-specific functions, to generate in-depth ESG analysis. Complementing this agentic system, we present a comprehensive three-level benchmark derived from 310 corporate sustainability reports, designed to evaluate capabilities ranging from atomic common-sense questions to the generation of integrated, in-depth analysis. Empirical evaluations demonstrate that ESGAgent outperforms state-of-the-art closed-source LLMs with an average accuracy of 84.15% on atomic question-answering tasks, and excels in professional report generation by integrating rich charts and verifiable references. These findings confirm the diagnostic value of our benchmark, establishing it as a vital testbed for assessing general and advanced agentic capabilities in high-stakes vertical domains. Read More