Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

Daily AI News
AI News & Insights Featured Image

Fairness in Healthcare Processes: A Quantitative Analysis of Decision Making in Triage AI updates on arXiv.org

Fairness in Healthcare Processes: A Quantitative Analysis of Decision Making in Triagecs.AI updates on arXiv.org arXiv:2601.11065v1 Announce Type: cross
Abstract: Fairness in automated decision-making has become a critical concern, particularly in high-pressure healthcare scenarios such as emergency triage, where fast and equitable decisions are essential. Process mining is increasingly investigating fairness. There is a growing area focusing on fairness-aware algorithms. So far, we know less how these concepts perform on empirical healthcare data or how they cover aspects of justice theory. This study addresses this research problem and proposes a process mining approach to assess fairness in triage by linking real-life event logs with conceptual dimensions of justice. Using the MIMICEL event log (as derived from MIMIC-IV ED), we analyze time, re-do, deviation and decision as process outcomes, and evaluate the influence of age, gender, race, language and insurance using the Kruskal-Wallis, Chi-square and effect size measurements. These outcomes are mapped to justice dimensions to support the development of a conceptual framework. The results demonstrate which aspects of potential unfairness in high-acuity and sub-acute surface. In this way, this study contributes empirical insights that support further research in responsible, fairness-aware process mining in healthcare.

 arXiv:2601.11065v1 Announce Type: cross
Abstract: Fairness in automated decision-making has become a critical concern, particularly in high-pressure healthcare scenarios such as emergency triage, where fast and equitable decisions are essential. Process mining is increasingly investigating fairness. There is a growing area focusing on fairness-aware algorithms. So far, we know less how these concepts perform on empirical healthcare data or how they cover aspects of justice theory. This study addresses this research problem and proposes a process mining approach to assess fairness in triage by linking real-life event logs with conceptual dimensions of justice. Using the MIMICEL event log (as derived from MIMIC-IV ED), we analyze time, re-do, deviation and decision as process outcomes, and evaluate the influence of age, gender, race, language and insurance using the Kruskal-Wallis, Chi-square and effect size measurements. These outcomes are mapped to justice dimensions to support the development of a conceptual framework. The results demonstrate which aspects of potential unfairness in high-acuity and sub-acute surface. In this way, this study contributes empirical insights that support further research in responsible, fairness-aware process mining in healthcare. Read More  

Daily AI News
AI News & Insights Featured Image

TSSR: Two-Stage Swap-Reward-Driven Reinforcement Learning for Character-Level SMILES Generation AI updates on arXiv.org

TSSR: Two-Stage Swap-Reward-Driven Reinforcement Learning for Character-Level SMILES Generationcs.AI updates on arXiv.org arXiv:2601.04521v2 Announce Type: replace-cross
Abstract: The design of reliable, valid, and diverse molecules is fundamental to modern drug discovery, as improved molecular generation supports efficient exploration of the chemical space for potential drug candidates and reduces the cost of early design efforts. Despite these needs, current chemical language models that generate molecules as SMILES strings are vulnerable to compounding token errors: many samples are unparseable or chemically implausible, and hard constraints meant to prevent failure can restrict exploration. To address this gap, we introduce TSSR, a Two-Stage, Swap-Reward-driven reinforcement learning (RL) framework for character-level SMILES generation. Stage one rewards local token swaps that repair syntax, promoting transitions from invalid to parseable strings. Stage two provides chemistry-aware feedback from RDKit diagnostics, rewarding reductions in valence, aromaticity, and connectivity issues. The reward decomposes into interpretable terms (swap efficiency, error reduction, distance to validity), is model agnostic, and requires no task-specific labels or hand-crafted grammars. We evaluated TSSR on the MOSES benchmark using a GRU policy trained with PPO in both pure RL (P-RL) from random initialization and fine-tuning RL (F-RL) starting from a pretrained chemical language model, assessing 10,000 generated SMILES per run. In P-RL, TSSR significantly improves syntactic validity, chemical validity, and novelty. In F-RL, TSSR preserves drug-likeness and synthesizability while increasing validity and novelty. Token-level analysis shows that syntax edits and chemistry fixes act jointly to reduce RDKit detected errors. TSSR converts a sparse terminal objective into a denser and more interpretable reward, improving both syntactic and chemical quality without reducing diversity. TSSR is dataset-agnostic and can be adapted to various reinforcement learning approaches.

 arXiv:2601.04521v2 Announce Type: replace-cross
Abstract: The design of reliable, valid, and diverse molecules is fundamental to modern drug discovery, as improved molecular generation supports efficient exploration of the chemical space for potential drug candidates and reduces the cost of early design efforts. Despite these needs, current chemical language models that generate molecules as SMILES strings are vulnerable to compounding token errors: many samples are unparseable or chemically implausible, and hard constraints meant to prevent failure can restrict exploration. To address this gap, we introduce TSSR, a Two-Stage, Swap-Reward-driven reinforcement learning (RL) framework for character-level SMILES generation. Stage one rewards local token swaps that repair syntax, promoting transitions from invalid to parseable strings. Stage two provides chemistry-aware feedback from RDKit diagnostics, rewarding reductions in valence, aromaticity, and connectivity issues. The reward decomposes into interpretable terms (swap efficiency, error reduction, distance to validity), is model agnostic, and requires no task-specific labels or hand-crafted grammars. We evaluated TSSR on the MOSES benchmark using a GRU policy trained with PPO in both pure RL (P-RL) from random initialization and fine-tuning RL (F-RL) starting from a pretrained chemical language model, assessing 10,000 generated SMILES per run. In P-RL, TSSR significantly improves syntactic validity, chemical validity, and novelty. In F-RL, TSSR preserves drug-likeness and synthesizability while increasing validity and novelty. Token-level analysis shows that syntax edits and chemistry fixes act jointly to reduce RDKit detected errors. TSSR converts a sparse terminal objective into a denser and more interpretable reward, improving both syntactic and chemical quality without reducing diversity. TSSR is dataset-agnostic and can be adapted to various reinforcement learning approaches. Read More  

Daily AI News
AI News & Insights Featured Image

V2P: Visual Attention Calibration for GUI Grounding via Background Suppression and Center Peaking AI updates on arXiv.org

V2P: Visual Attention Calibration for GUI Grounding via Background Suppression and Center Peakingcs.AI updates on arXiv.org arXiv:2508.13634v2 Announce Type: replace
Abstract: Precise localization of GUI elements is crucial for the development of GUI agents. Traditional methods rely on bounding box or center-point regression, neglecting spatial interaction uncertainty and visual-semantic hierarchies. Recent methods incorporate attention mechanisms but still face two key issues: (1) ignoring processing background regions causes attention drift from the desired area, and (2) uniform modeling the target UI element fails to distinguish between its center and edges, leading to click imprecision. Inspired by how humans visually process and interact with GUI elements, we propose the Valley-to-Peak (V2P) method to address these issues. To mitigate background distractions, V2P introduces a suppression attention mechanism that minimizes the model’s focus on irrelevant regions to highlight the intended region. For the issue of center-edge distinction, V2P applies a Fitts’ Law-inspired approach by modeling GUI interactions as 2D Gaussian heatmaps where the weight gradually decreases from the center towards the edges. The weight distribution follows a Gaussian function, with the variance determined by the target’s size. Consequently, V2P effectively isolates the target area and teaches the model to concentrate on the most essential point of the UI element. The model trained by V2P achieves the performance with 92.4% and 52.5% on two benchmarks ScreenSpot-v2 and ScreenSpot-Pro (see Fig.~ref{fig:main_results_charts}). Ablations further confirm each component’s contribution, underscoring V2P’s generalizability in precise GUI grounding tasks and its potential for real-world deployment in future GUI agents.

 arXiv:2508.13634v2 Announce Type: replace
Abstract: Precise localization of GUI elements is crucial for the development of GUI agents. Traditional methods rely on bounding box or center-point regression, neglecting spatial interaction uncertainty and visual-semantic hierarchies. Recent methods incorporate attention mechanisms but still face two key issues: (1) ignoring processing background regions causes attention drift from the desired area, and (2) uniform modeling the target UI element fails to distinguish between its center and edges, leading to click imprecision. Inspired by how humans visually process and interact with GUI elements, we propose the Valley-to-Peak (V2P) method to address these issues. To mitigate background distractions, V2P introduces a suppression attention mechanism that minimizes the model’s focus on irrelevant regions to highlight the intended region. For the issue of center-edge distinction, V2P applies a Fitts’ Law-inspired approach by modeling GUI interactions as 2D Gaussian heatmaps where the weight gradually decreases from the center towards the edges. The weight distribution follows a Gaussian function, with the variance determined by the target’s size. Consequently, V2P effectively isolates the target area and teaches the model to concentrate on the most essential point of the UI element. The model trained by V2P achieves the performance with 92.4% and 52.5% on two benchmarks ScreenSpot-v2 and ScreenSpot-Pro (see Fig.~ref{fig:main_results_charts}). Ablations further confirm each component’s contribution, underscoring V2P’s generalizability in precise GUI grounding tasks and its potential for real-world deployment in future GUI agents. Read More  

Daily AI News
AI News & Insights Featured Image

Shapley Revisited: Tractable Responsibility Measures for Query Answers AI updates on arXiv.org

Shapley Revisited: Tractable Responsibility Measures for Query Answerscs.AI updates on arXiv.org arXiv:2503.22358v3 Announce Type: replace-cross
Abstract: The Shapley value, originating from cooperative game theory, has been employed to define responsibility measures that quantify the contributions of database facts to obtaining a given query answer. For non-numeric queries, this is done by considering a cooperative game whose players are the facts and whose wealth function assigns 1 or 0 to each subset of the database, depending on whether the query answer holds in the given subset. While conceptually simple, this approach suffers from a notable drawback: the problem of computing such Shapley values is #P-hard in data complexity, even for simple conjunctive queries. This motivates us to revisit the question of what constitutes a reasonable responsibility measure and to introduce a new family of responsibility measures — weighted sums of minimal supports (WSMS) — which satisfy intuitive properties. Interestingly, while the definition of WSMSs is simple and bears no obvious resemblance to the Shapley value formula, we prove that every WSMS measure can be equivalently seen as the Shapley value of a suitably defined cooperative game. Moreover, WSMS measures enjoy tractable data complexity for a large class of queries, including all unions of conjunctive queries. We further explore the combined complexity of WSMS computation and establish (in)tractability results for various subclasses of conjunctive queries.

 arXiv:2503.22358v3 Announce Type: replace-cross
Abstract: The Shapley value, originating from cooperative game theory, has been employed to define responsibility measures that quantify the contributions of database facts to obtaining a given query answer. For non-numeric queries, this is done by considering a cooperative game whose players are the facts and whose wealth function assigns 1 or 0 to each subset of the database, depending on whether the query answer holds in the given subset. While conceptually simple, this approach suffers from a notable drawback: the problem of computing such Shapley values is #P-hard in data complexity, even for simple conjunctive queries. This motivates us to revisit the question of what constitutes a reasonable responsibility measure and to introduce a new family of responsibility measures — weighted sums of minimal supports (WSMS) — which satisfy intuitive properties. Interestingly, while the definition of WSMSs is simple and bears no obvious resemblance to the Shapley value formula, we prove that every WSMS measure can be equivalently seen as the Shapley value of a suitably defined cooperative game. Moreover, WSMS measures enjoy tractable data complexity for a large class of queries, including all unions of conjunctive queries. We further explore the combined complexity of WSMS computation and establish (in)tractability results for various subclasses of conjunctive queries. Read More  

Daily AI News
AI News & Insights Featured Image

Value Improved Actor Critic Algorithms AI updates on arXiv.org

Value Improved Actor Critic Algorithmscs.AI updates on arXiv.org arXiv:2406.01423v4 Announce Type: replace-cross
Abstract: To learn approximately optimal acting policies for decision problems, modern Actor Critic algorithms rely on deep Neural Networks (DNNs) to parameterize the acting policy and greedification operators to iteratively improve it. The reliance on DNNs suggests an improvement that is gradient based, which is per step much less greedy than the improvement possible by greedier operators such as the greedy update used by Q-learning algorithms. On the other hand, slow changes to the policy can also be beneficial for the stability of the learning process, resulting in a tradeoff between greedification and stability. To better address this tradeoff, we propose to decouple the acting policy from the policy evaluated by the critic. This allows the agent to separately improve the critic’s policy (e.g. value improvement) with greedier updates while maintaining the slow gradient-based improvement to the parameterized acting policy. We investigate the convergence of this approach using the popular analysis scheme of generalized Policy Iteration in the finite-horizon domain. Empirically, incorporating value-improvement into the popular off-policy actor-critic algorithms TD3 and SAC significantly improves or matches performance over their respective baselines, across different environments from the DeepMind continuous control domain, with negligible compute and implementation cost.

 arXiv:2406.01423v4 Announce Type: replace-cross
Abstract: To learn approximately optimal acting policies for decision problems, modern Actor Critic algorithms rely on deep Neural Networks (DNNs) to parameterize the acting policy and greedification operators to iteratively improve it. The reliance on DNNs suggests an improvement that is gradient based, which is per step much less greedy than the improvement possible by greedier operators such as the greedy update used by Q-learning algorithms. On the other hand, slow changes to the policy can also be beneficial for the stability of the learning process, resulting in a tradeoff between greedification and stability. To better address this tradeoff, we propose to decouple the acting policy from the policy evaluated by the critic. This allows the agent to separately improve the critic’s policy (e.g. value improvement) with greedier updates while maintaining the slow gradient-based improvement to the parameterized acting policy. We investigate the convergence of this approach using the popular analysis scheme of generalized Policy Iteration in the finite-horizon domain. Empirically, incorporating value-improvement into the popular off-policy actor-critic algorithms TD3 and SAC significantly improves or matches performance over their respective baselines, across different environments from the DeepMind continuous control domain, with negligible compute and implementation cost. Read More  

Daily AI News
JPMorgan Chase treats AI spending as core infrastructure AI News

JPMorgan Chase treats AI spending as core infrastructure AI News

JPMorgan Chase treats AI spending as core infrastructureAI News Inside large banks, artificial intelligence has moved into a category once reserved for payment systems, data centres, and core risk controls. At JPMorgan Chase, AI is framed as infrastructure the bank believes it cannot afford to neglect. That position came through clearly in recent comments from CEO Jamie Dimon, who defended the bank’s rising technology
The post JPMorgan Chase treats AI spending as core infrastructure appeared first on AI News.

 Inside large banks, artificial intelligence has moved into a category once reserved for payment systems, data centres, and core risk controls. At JPMorgan Chase, AI is framed as infrastructure the bank believes it cannot afford to neglect. That position came through clearly in recent comments from CEO Jamie Dimon, who defended the bank’s rising technology
The post JPMorgan Chase treats AI spending as core infrastructure appeared first on AI News. Read More  

Daily AI News
AI News & Insights Featured Image

Time Series Isn’t Enough: How Graph Neural Networks Change Demand Forecasting Towards Data Science

Time Series Isn’t Enough: How Graph Neural Networks Change Demand ForecastingTowards Data Science Why modeling SKUs as a network reveals what traditional forecasts miss
The post Time Series Isn’t Enough: How Graph Neural Networks Change Demand Forecasting appeared first on Towards Data Science.

 Why modeling SKUs as a network reveals what traditional forecasts miss
The post Time Series Isn’t Enough: How Graph Neural Networks Change Demand Forecasting appeared first on Towards Data Science. Read More