Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

Daily AI News
AI News & Insights Featured Image

Multimodal Generative Engine Optimization: Rank Manipulation for Vision-Language Model Rankers AI updates on arXiv.org

Multimodal Generative Engine Optimization: Rank Manipulation for Vision-Language Model Rankerscs.AI updates on arXiv.org arXiv:2601.12263v1 Announce Type: cross
Abstract: Vision-Language Models (VLMs) are rapidly replacing unimodal encoders in modern retrieval and recommendation systems. While their capabilities are well-documented, their robustness against adversarial manipulation in competitive ranking scenarios remains largely unexplored. In this paper, we uncover a critical vulnerability in VLM-based product search: multimodal ranking attacks. We present Multimodal Generative Engine Optimization (MGEO), a novel adversarial framework that enables a malicious actor to unfairly promote a target product by jointly optimizing imperceptible image perturbations and fluent textual suffixes. Unlike existing attacks that treat modalities in isolation, MGEO employs an alternating gradient-based optimization strategy to exploit the deep cross-modal coupling within the VLM. Extensive experiments on real-world datasets using state-of-the-art models demonstrate that our coordinated attack significantly outperforms text-only and image-only baselines. These findings reveal that multimodal synergy, typically a strength of VLMs, can be weaponized to compromise the integrity of search rankings without triggering conventional content filters.

 arXiv:2601.12263v1 Announce Type: cross
Abstract: Vision-Language Models (VLMs) are rapidly replacing unimodal encoders in modern retrieval and recommendation systems. While their capabilities are well-documented, their robustness against adversarial manipulation in competitive ranking scenarios remains largely unexplored. In this paper, we uncover a critical vulnerability in VLM-based product search: multimodal ranking attacks. We present Multimodal Generative Engine Optimization (MGEO), a novel adversarial framework that enables a malicious actor to unfairly promote a target product by jointly optimizing imperceptible image perturbations and fluent textual suffixes. Unlike existing attacks that treat modalities in isolation, MGEO employs an alternating gradient-based optimization strategy to exploit the deep cross-modal coupling within the VLM. Extensive experiments on real-world datasets using state-of-the-art models demonstrate that our coordinated attack significantly outperforms text-only and image-only baselines. These findings reveal that multimodal synergy, typically a strength of VLMs, can be weaponized to compromise the integrity of search rankings without triggering conventional content filters. Read More  

Daily AI News
AI News & Insights Featured Image

Improved Bug Localization with AI Agents Leveraging Hypothesis and Dynamic Cognition AI updates on arXiv.org

Improved Bug Localization with AI Agents Leveraging Hypothesis and Dynamic Cognitioncs.AI updates on arXiv.org arXiv:2601.12522v1 Announce Type: cross
Abstract: Software bugs cost technology providers (e.g., AT&T) billions annually and cause developers to spend roughly 50% of their time on bug resolution. Traditional methods for bug localization often analyze the suspiciousness of code components (e.g., methods, documents) in isolation, overlooking their connections with other components in the codebase. Recent advances in Large Language Models (LLMs) and agentic AI techniques have shown strong potential for code understanding, but still lack causal reasoning during code exploration and struggle to manage growing context effectively, limiting their capability. In this paper, we present a novel agentic technique for bug localization — CogniGent — that overcomes the limitations above by leveraging multiple AI agents capable of causal reasoning, call-graph-based root cause analysis and context engineering. It emulates developers-inspired debugging practices (a.k.a., dynamic cognitive debugging) and conducts hypothesis testing to support bug localization. We evaluate CogniGent on a curated dataset of 591 bug reports using three widely adopted performance metrics and compare it against six established baselines from the literature. Experimental results show that our technique consistently outperformed existing traditional and LLM-based techniques, achieving MAP improvements of 23.33-38.57% at the document and method levels. Similar gains were observed in MRR, with increases of 25.14-53.74% at both granularity levels. Statistical significance tests also confirm the superiority of our technique. By addressing the reasoning, dependency, and context limitations, CogniGent advances the state of bug localization, bridging human-like cognition with agentic automation for improved performance.

 arXiv:2601.12522v1 Announce Type: cross
Abstract: Software bugs cost technology providers (e.g., AT&T) billions annually and cause developers to spend roughly 50% of their time on bug resolution. Traditional methods for bug localization often analyze the suspiciousness of code components (e.g., methods, documents) in isolation, overlooking their connections with other components in the codebase. Recent advances in Large Language Models (LLMs) and agentic AI techniques have shown strong potential for code understanding, but still lack causal reasoning during code exploration and struggle to manage growing context effectively, limiting their capability. In this paper, we present a novel agentic technique for bug localization — CogniGent — that overcomes the limitations above by leveraging multiple AI agents capable of causal reasoning, call-graph-based root cause analysis and context engineering. It emulates developers-inspired debugging practices (a.k.a., dynamic cognitive debugging) and conducts hypothesis testing to support bug localization. We evaluate CogniGent on a curated dataset of 591 bug reports using three widely adopted performance metrics and compare it against six established baselines from the literature. Experimental results show that our technique consistently outperformed existing traditional and LLM-based techniques, achieving MAP improvements of 23.33-38.57% at the document and method levels. Similar gains were observed in MRR, with increases of 25.14-53.74% at both granularity levels. Statistical significance tests also confirm the superiority of our technique. By addressing the reasoning, dependency, and context limitations, CogniGent advances the state of bug localization, bridging human-like cognition with agentic automation for improved performance. Read More  

Daily AI News
AI News & Insights Featured Image

The human brain may work more like AI than anyone expected Artificial Intelligence News — ScienceDaily

The human brain may work more like AI than anyone expectedArtificial Intelligence News — ScienceDaily Scientists have discovered that the human brain understands spoken language in a way that closely resembles how advanced AI language models work. By tracking brain activity as people listened to a long podcast, researchers found that meaning unfolds step by step—much like the layered processing inside systems such as GPT-style models.

 Scientists have discovered that the human brain understands spoken language in a way that closely resembles how advanced AI language models work. By tracking brain activity as people listened to a long podcast, researchers found that meaning unfolds step by step—much like the layered processing inside systems such as GPT-style models. Read More  

Daily AI News
AI News & Insights Featured Image

How AutoGluon Enables Modern AutoML Pipelines for Production-Grade Tabular Models with Ensembling and Distillation MarkTechPost

How AutoGluon Enables Modern AutoML Pipelines for Production-Grade Tabular Models with Ensembling and DistillationMarkTechPost In this tutorial, we build a production-grade tabular machine learning pipeline using AutoGluon, taking a real-world mixed-type dataset from raw ingestion through to deployment-ready artifacts. We train high-quality stacked and bagged ensembles, evaluate performance with robust metrics, perform subgroup and feature-level analysis, and then optimize the model for real-time inference using refit-full and distillation. Throughout
The post How AutoGluon Enables Modern AutoML Pipelines for Production-Grade Tabular Models with Ensembling and Distillation appeared first on MarkTechPost.

 In this tutorial, we build a production-grade tabular machine learning pipeline using AutoGluon, taking a real-world mixed-type dataset from raw ingestion through to deployment-ready artifacts. We train high-quality stacked and bagged ensembles, evaluate performance with robust metrics, perform subgroup and feature-level analysis, and then optimize the model for real-time inference using refit-full and distillation. Throughout
The post How AutoGluon Enables Modern AutoML Pipelines for Production-Grade Tabular Models with Ensembling and Distillation appeared first on MarkTechPost. Read More  

Daily AI News
Salesforce AI Introduces FOFPred: A Language-Driven Future Optical Flow Prediction Framework that Enables Improved Robot Control and Video Generation MarkTechPost

Salesforce AI Introduces FOFPred: A Language-Driven Future Optical Flow Prediction Framework that Enables Improved Robot Control and Video Generation MarkTechPost

Salesforce AI Introduces FOFPred: A Language-Driven Future Optical Flow Prediction Framework that Enables Improved Robot Control and Video GenerationMarkTechPost Salesforce AI research team present FOFPred, a language driven future optical flow prediction framework that connects large vision language models with diffusion transformers for dense motion forecasting in control and video generation settings. FOFPred takes one or more images and a natural language instruction such as ‘moving the bottle from right to left’ and predicts
The post Salesforce AI Introduces FOFPred: A Language-Driven Future Optical Flow Prediction Framework that Enables Improved Robot Control and Video Generation appeared first on MarkTechPost.

 Salesforce AI research team present FOFPred, a language driven future optical flow prediction framework that connects large vision language models with diffusion transformers for dense motion forecasting in control and video generation settings. FOFPred takes one or more images and a natural language instruction such as ‘moving the bottle from right to left’ and predicts
The post Salesforce AI Introduces FOFPred: A Language-Driven Future Optical Flow Prediction Framework that Enables Improved Robot Control and Video Generation appeared first on MarkTechPost. Read More  

Daily AI News
Balancing AI cost efficiency with data sovereignty AI News

Balancing AI cost efficiency with data sovereignty AI News

Balancing AI cost efficiency with data sovereigntyAI News AI cost efficiency and data sovereignty are at odds, forcing a rethink of enterprise risk frameworks for global organisations. For over a year, the generative AI narrative focused on a race for capability, often measuring success by parameter counts and flawed benchmark scores. Boardroom conversations, however, are undergoing a necessary correction. While the allure of
The post Balancing AI cost efficiency with data sovereignty appeared first on AI News.

 AI cost efficiency and data sovereignty are at odds, forcing a rethink of enterprise risk frameworks for global organisations. For over a year, the generative AI narrative focused on a race for capability, often measuring success by parameter counts and flawed benchmark scores. Boardroom conversations, however, are undergoing a necessary correction. While the allure of
The post Balancing AI cost efficiency with data sovereignty appeared first on AI News. Read More  

Daily AI News
AI News & Insights Featured Image

Towards a Unified View of Large Language Model Post-Training AI updates on arXiv.org

Towards a Unified View of Large Language Model Post-Trainingcs.AI updates on arXiv.org arXiv:2509.04419v2 Announce Type: replace-cross
Abstract: Two major sources of training data exist for post-training modern language models: online (model-generated rollouts) data, and offline (human or other-model demonstrations) data. These two types of data are typically used by approaches like Reinforcement Learning (RL) and Supervised Fine-Tuning (SFT), respectively. In this paper, we show that these approaches are not in contradiction, but are instances of a single optimization process. We derive a Unified Policy Gradient Estimator, and present the calculations of a wide spectrum of post-training approaches as the gradient of a common objective under different data distribution assumptions and various bias-variance tradeoffs. The gradient estimator is constructed with four interchangeable parts: stabilization mask, reference policy denominator, advantage estimate, and likelihood gradient. Motivated by our theoretical findings, we propose Hybrid Post-Training (HPT), an algorithm that dynamically selects different training signals. HPT is designed to yield both effective exploitation of demonstration and stable exploration without sacrificing learned reasoning patterns. We provide extensive experiments and ablation studies to verify the effectiveness of our unified theoretical framework and HPT. Across six mathematical reasoning benchmarks and two out-of-distribution suites, HPT consistently surpasses strong baselines across models of varying scales and families.

 arXiv:2509.04419v2 Announce Type: replace-cross
Abstract: Two major sources of training data exist for post-training modern language models: online (model-generated rollouts) data, and offline (human or other-model demonstrations) data. These two types of data are typically used by approaches like Reinforcement Learning (RL) and Supervised Fine-Tuning (SFT), respectively. In this paper, we show that these approaches are not in contradiction, but are instances of a single optimization process. We derive a Unified Policy Gradient Estimator, and present the calculations of a wide spectrum of post-training approaches as the gradient of a common objective under different data distribution assumptions and various bias-variance tradeoffs. The gradient estimator is constructed with four interchangeable parts: stabilization mask, reference policy denominator, advantage estimate, and likelihood gradient. Motivated by our theoretical findings, we propose Hybrid Post-Training (HPT), an algorithm that dynamically selects different training signals. HPT is designed to yield both effective exploitation of demonstration and stable exploration without sacrificing learned reasoning patterns. We provide extensive experiments and ablation studies to verify the effectiveness of our unified theoretical framework and HPT. Across six mathematical reasoning benchmarks and two out-of-distribution suites, HPT consistently surpasses strong baselines across models of varying scales and families. Read More  

Daily AI News
AI News & Insights Featured Image

POLARIS: Typed Planning and Governed Execution for Agentic AI in Back-Office Automation AI updates on arXiv.org

POLARIS: Typed Planning and Governed Execution for Agentic AI in Back-Office Automationcs.AI updates on arXiv.org arXiv:2601.11816v1 Announce Type: new
Abstract: Enterprise back office workflows require agentic systems that are auditable, policy-aligned, and operationally predictable, capabilities that generic multi-agent setups often fail to deliver. We present POLARIS (Policy-Aware LLM Agentic Reasoning for Integrated Systems), a governed orchestration framework that treats automation as typed plan synthesis and validated execution over LLM agents. A planner proposes structurally diverse, type checked directed acyclic graphs (DAGs), a rubric guided reasoning module selects a single compliant plan, and execution is guarded by validator gated checks, a bounded repair loop, and compiled policy guardrails that block or route side effects before they occur. Applied to document centric finance tasks, POLARIS produces decision grade artifacts and full execution traces while reducing human intervention. Empirically, POLARIS achieves a micro F1 of 0.81 on the SROIE dataset and, on a controlled synthetic suite, achieves 0.95 to 1.00 precision for anomaly routing with preserved audit trails. These evaluations constitute an initial benchmark for governed Agentic AI. POLARIS provides a methodological and benchmark reference for policy-aligned Agentic AI. Keywords Agentic AI, Enterprise Automation, Back-Office Tasks, Benchmarks, Governance, Typed Planning, Evaluation

 arXiv:2601.11816v1 Announce Type: new
Abstract: Enterprise back office workflows require agentic systems that are auditable, policy-aligned, and operationally predictable, capabilities that generic multi-agent setups often fail to deliver. We present POLARIS (Policy-Aware LLM Agentic Reasoning for Integrated Systems), a governed orchestration framework that treats automation as typed plan synthesis and validated execution over LLM agents. A planner proposes structurally diverse, type checked directed acyclic graphs (DAGs), a rubric guided reasoning module selects a single compliant plan, and execution is guarded by validator gated checks, a bounded repair loop, and compiled policy guardrails that block or route side effects before they occur. Applied to document centric finance tasks, POLARIS produces decision grade artifacts and full execution traces while reducing human intervention. Empirically, POLARIS achieves a micro F1 of 0.81 on the SROIE dataset and, on a controlled synthetic suite, achieves 0.95 to 1.00 precision for anomaly routing with preserved audit trails. These evaluations constitute an initial benchmark for governed Agentic AI. POLARIS provides a methodological and benchmark reference for policy-aligned Agentic AI. Keywords Agentic AI, Enterprise Automation, Back-Office Tasks, Benchmarks, Governance, Typed Planning, Evaluation Read More  

Daily AI News
AI News & Insights Featured Image

TractRLFusion: A GPT-Based Multi-Critic Policy Fusion Framework for Fiber Tractography AI updates on arXiv.org

TractRLFusion: A GPT-Based Multi-Critic Policy Fusion Framework for Fiber Tractographycs.AI updates on arXiv.org arXiv:2601.13897v1 Announce Type: cross
Abstract: Tractography plays a pivotal role in the non-invasive reconstruction of white matter fiber pathways, providing vital information on brain connectivity and supporting precise neurosurgical planning. Although traditional methods relied mainly on classical deterministic and probabilistic approaches, recent progress has benefited from supervised deep learning (DL) and deep reinforcement learning (DRL) to improve tract reconstruction. A persistent challenge in tractography is accurately reconstructing white matter tracts while minimizing spurious connections. To address this, we propose TractRLFusion, a novel GPT-based policy fusion framework that integrates multiple RL policies through a data-driven fusion strategy. Our method employs a two-stage training data selection process for effective policy fusion, followed by a multi-critic fine-tuning phase to enhance robustness and generalization. Experiments on HCP, ISMRM, and TractoInferno datasets demonstrate that TractRLFusion outperforms individual RL policies as well as state-of-the-art classical and DRL methods in accuracy and anatomical reliability.

 arXiv:2601.13897v1 Announce Type: cross
Abstract: Tractography plays a pivotal role in the non-invasive reconstruction of white matter fiber pathways, providing vital information on brain connectivity and supporting precise neurosurgical planning. Although traditional methods relied mainly on classical deterministic and probabilistic approaches, recent progress has benefited from supervised deep learning (DL) and deep reinforcement learning (DRL) to improve tract reconstruction. A persistent challenge in tractography is accurately reconstructing white matter tracts while minimizing spurious connections. To address this, we propose TractRLFusion, a novel GPT-based policy fusion framework that integrates multiple RL policies through a data-driven fusion strategy. Our method employs a two-stage training data selection process for effective policy fusion, followed by a multi-critic fine-tuning phase to enhance robustness and generalization. Experiments on HCP, ISMRM, and TractoInferno datasets demonstrate that TractRLFusion outperforms individual RL policies as well as state-of-the-art classical and DRL methods in accuracy and anatomical reliability. Read More