Gabliteration: Adaptive Multi-Directional Neural Weight Modification for Selective Behavioral Alteration in Large Language Modelscs.AI updates on arXiv.org arXiv:2512.18901v3 Announce Type: replace
Abstract: We present Gabliteration, a novel neural weight modification technique that advances beyond traditional abliteration methods by implementing adaptive multi-directional projections with regularized layer selection. Our approach addresses the fundamental limitation of existing methods that compromise model quality while attempting to modify specific behavioral patterns. Through dynamic layer optimization, regularized projection matrices, and adaptive scaling mechanisms, we achieve theoretically superior weight modification while minimizing quality degradation in unrelated domains. We validate our method through the gabliterated-v1 model series (0.6B to 4B parameters) available on Hugging Face, demonstrating practical applicability across multiple model scales.
arXiv:2512.18901v3 Announce Type: replace
Abstract: We present Gabliteration, a novel neural weight modification technique that advances beyond traditional abliteration methods by implementing adaptive multi-directional projections with regularized layer selection. Our approach addresses the fundamental limitation of existing methods that compromise model quality while attempting to modify specific behavioral patterns. Through dynamic layer optimization, regularized projection matrices, and adaptive scaling mechanisms, we achieve theoretically superior weight modification while minimizing quality degradation in unrelated domains. We validate our method through the gabliterated-v1 model series (0.6B to 4B parameters) available on Hugging Face, demonstrating practical applicability across multiple model scales. Read More
DGRAG: Distributed Graph-based Retrieval-Augmented Generation in Edge-Cloud Systemscs.AI updates on arXiv.org arXiv:2505.19847v2 Announce Type: replace
Abstract: Retrieval-Augmented Generation (RAG) improves factuality by grounding LLMs in external knowledge, yet conventional centralized RAG requires aggregating distributed data, raising privacy risks and incurring high retrieval latency and cost. We present DGRAG, a distributed graph-driven RAG framework for edge-cloud collaborative systems. Each edge device organizes local documents into a knowledge graph and periodically uploads subgraph-level summaries to the cloud for lightweight global indexing without exposing raw data. At inference time, queries are first answered on the edge; a gate mechanism assesses the confidence and consistency of multiple local generations to decide whether to return a local answer or escalate the query. For escalated queries, the cloud performs summary-based matching to identify relevant edges, retrieves supporting evidence from them, and generates the final response with a cloud LLM. Experiments on distributed question answering show that DGRAG consistently outperforms decentralized baselines while substantially reducing cloud overhead.
arXiv:2505.19847v2 Announce Type: replace
Abstract: Retrieval-Augmented Generation (RAG) improves factuality by grounding LLMs in external knowledge, yet conventional centralized RAG requires aggregating distributed data, raising privacy risks and incurring high retrieval latency and cost. We present DGRAG, a distributed graph-driven RAG framework for edge-cloud collaborative systems. Each edge device organizes local documents into a knowledge graph and periodically uploads subgraph-level summaries to the cloud for lightweight global indexing without exposing raw data. At inference time, queries are first answered on the edge; a gate mechanism assesses the confidence and consistency of multiple local generations to decide whether to return a local answer or escalate the query. For escalated queries, the cloud performs summary-based matching to identify relevant edges, retrieves supporting evidence from them, and generates the final response with a cloud LLM. Experiments on distributed question answering show that DGRAG consistently outperforms decentralized baselines while substantially reducing cloud overhead. Read More
Embodied AI with Foundation Models for Mobile Service Robots: A Systematic Reviewcs.AI updates on arXiv.org arXiv:2505.20503v2 Announce Type: replace-cross
Abstract: Rapid advancements in foundation models, including Large Language Models, Vision-Language Models, Multimodal Large Language Models, and Vision-Language-Action Models, have opened new avenues for embodied AI in mobile service robotics. By combining foundation models with the principles of embodied AI, where intelligent systems perceive, reason, and act through physical interaction, mobile service robots can achieve more flexible understanding, adaptive behavior, and robust task execution in dynamic real-world environments. Despite this progress, embodied AI for mobile service robots continues to face fundamental challenges related to the translation of natural language instructions into executable robot actions, multimodal perception in human-centered environments, uncertainty estimation for safe decision-making, and computational constraints for real-time onboard deployment. In this paper, we present the first systematic review focused specifically on the integration of foundation models in mobile service robotics. We analyze how recent advances in foundation models address these core challenges through language-conditioned control, multimodal sensor fusion, uncertainty-aware reasoning, and efficient model scaling. We further examine real-world applications in domestic assistance, healthcare, and service automation, highlighting how foundation models enable context-aware, socially responsive, and generalizable robot behaviors. Beyond technical considerations, we discuss ethical, societal, and human-interaction implications associated with deploying foundation model-enabled service robots in human environments. Finally, we outline future research directions emphasizing reliability and lifelong adaptation, privacy-aware and resource-constrained deployment, and governance and human-in-the-loop frameworks required for safe, scalable, and trustworthy mobile service robotics.
arXiv:2505.20503v2 Announce Type: replace-cross
Abstract: Rapid advancements in foundation models, including Large Language Models, Vision-Language Models, Multimodal Large Language Models, and Vision-Language-Action Models, have opened new avenues for embodied AI in mobile service robotics. By combining foundation models with the principles of embodied AI, where intelligent systems perceive, reason, and act through physical interaction, mobile service robots can achieve more flexible understanding, adaptive behavior, and robust task execution in dynamic real-world environments. Despite this progress, embodied AI for mobile service robots continues to face fundamental challenges related to the translation of natural language instructions into executable robot actions, multimodal perception in human-centered environments, uncertainty estimation for safe decision-making, and computational constraints for real-time onboard deployment. In this paper, we present the first systematic review focused specifically on the integration of foundation models in mobile service robotics. We analyze how recent advances in foundation models address these core challenges through language-conditioned control, multimodal sensor fusion, uncertainty-aware reasoning, and efficient model scaling. We further examine real-world applications in domestic assistance, healthcare, and service automation, highlighting how foundation models enable context-aware, socially responsive, and generalizable robot behaviors. Beyond technical considerations, we discuss ethical, societal, and human-interaction implications associated with deploying foundation model-enabled service robots in human environments. Finally, we outline future research directions emphasizing reliability and lifelong adaptation, privacy-aware and resource-constrained deployment, and governance and human-in-the-loop frameworks required for safe, scalable, and trustworthy mobile service robotics. Read More
DeepBooTS: Dual-Stream Residual Boosting for Drift-Resilient Time-Series Forecastingcs.AI updates on arXiv.org arXiv:2511.06893v2 Announce Type: replace-cross
Abstract: Time-Series (TS) exhibits pronounced non-stationarity. Consequently, most forecasting methods display compromised robustness to concept drift, despite the prevalent application of instance normalization. We tackle this challenge by first analysing concept drift through a bias-variance lens and proving that weighted ensemble reduces variance without increasing bias. These insights motivate DeepBooTS, a novel end-to-end dual-stream residual-decreasing boosting method that progressively reconstructs the intrinsic signal. In our design, each block of a deep model becomes an ensemble of learners with an auxiliary output branch forming a highway to the final prediction. The block-wise outputs correct the residuals of previous blocks, leading to a learning-driven decomposition of both inputs and targets. This method enhances versatility and interpretability while substantially improving robustness to concept drift. Extensive experiments, including those on large-scale datasets, show that the proposed method outperforms existing methods by a large margin, yielding an average performance improvement of 15.8% across various datasets, establishing a new benchmark for TS forecasting.
arXiv:2511.06893v2 Announce Type: replace-cross
Abstract: Time-Series (TS) exhibits pronounced non-stationarity. Consequently, most forecasting methods display compromised robustness to concept drift, despite the prevalent application of instance normalization. We tackle this challenge by first analysing concept drift through a bias-variance lens and proving that weighted ensemble reduces variance without increasing bias. These insights motivate DeepBooTS, a novel end-to-end dual-stream residual-decreasing boosting method that progressively reconstructs the intrinsic signal. In our design, each block of a deep model becomes an ensemble of learners with an auxiliary output branch forming a highway to the final prediction. The block-wise outputs correct the residuals of previous blocks, leading to a learning-driven decomposition of both inputs and targets. This method enhances versatility and interpretability while substantially improving robustness to concept drift. Extensive experiments, including those on large-scale datasets, show that the proposed method outperforms existing methods by a large margin, yielding an average performance improvement of 15.8% across various datasets, establishing a new benchmark for TS forecasting. Read More
Understanding Post-Training Structural Changes in Large Language Modelscs.AI updates on arXiv.org arXiv:2509.17866v3 Announce Type: replace-cross
Abstract: Post-training fundamentally alters the behavior of large language models (LLMs), yet its impact on the internal parameter space remains poorly understood. In this work, we conduct a systematic singular value decomposition (SVD) analysis of principal linear layers in pretrained LLMs, focusing on two widely adopted post-training methods: instruction tuning and long-chain-of-thought (Long-CoT) distillation. Our analysis reveals two unexpected and robust structural changes: (1) a near-uniform geometric scaling of singular values across layers; and (2) highly consistent orthogonal transformations are applied to the left and right singular vectors of each matrix. Based on these findings, We propose a simple yet effective framework to describe the coordinated dynamics of parameters in LLMs, which elucidates why post-training inherently relies on the foundational capabilities developed during pre-training. Further experiments demonstrate that singular value scaling underpins the temperature-controlled regulatory mechanisms of post-training, while the coordinated rotation of singular vectors encodes the essential semantic alignment. These results challenge the prevailing view of the parameter space in large models as a black box, uncovering the first clear regularities in how parameters evolve during training, and providing a new perspective for deeper investigation into model parameter changes.
arXiv:2509.17866v3 Announce Type: replace-cross
Abstract: Post-training fundamentally alters the behavior of large language models (LLMs), yet its impact on the internal parameter space remains poorly understood. In this work, we conduct a systematic singular value decomposition (SVD) analysis of principal linear layers in pretrained LLMs, focusing on two widely adopted post-training methods: instruction tuning and long-chain-of-thought (Long-CoT) distillation. Our analysis reveals two unexpected and robust structural changes: (1) a near-uniform geometric scaling of singular values across layers; and (2) highly consistent orthogonal transformations are applied to the left and right singular vectors of each matrix. Based on these findings, We propose a simple yet effective framework to describe the coordinated dynamics of parameters in LLMs, which elucidates why post-training inherently relies on the foundational capabilities developed during pre-training. Further experiments demonstrate that singular value scaling underpins the temperature-controlled regulatory mechanisms of post-training, while the coordinated rotation of singular vectors encodes the essential semantic alignment. These results challenge the prevailing view of the parameter space in large models as a black box, uncovering the first clear regularities in how parameters evolve during training, and providing a new perspective for deeper investigation into model parameter changes. Read More
Google DeepMind Unveils AlphaGenome: A Unified Sequence-to-Function Model Using Hybrid Transformers and U-Nets to Decode the Human GenomeMarkTechPost Google DeepMind is expanding its biological toolkit beyond the world of protein folding. After the success of AlphaFold, the Google’s research team has introduced AlphaGenome. This is a unified deep learning model designed for sequence to function genomics. This represents a major shift in how we model the human genome. AlphaGenome does not treat DNA
The post Google DeepMind Unveils AlphaGenome: A Unified Sequence-to-Function Model Using Hybrid Transformers and U-Nets to Decode the Human Genome appeared first on MarkTechPost.
Google DeepMind is expanding its biological toolkit beyond the world of protein folding. After the success of AlphaFold, the Google’s research team has introduced AlphaGenome. This is a unified deep learning model designed for sequence to function genomics. This represents a major shift in how we model the human genome. AlphaGenome does not treat DNA
The post Google DeepMind Unveils AlphaGenome: A Unified Sequence-to-Function Model Using Hybrid Transformers and U-Nets to Decode the Human Genome appeared first on MarkTechPost. Read More
The French data protection authority fined the national employment agency €5 million (nearly €6 million) for failing to secure job seekers’ data, which allowed hackers to steal the personal information of 43 million people. […] Read More
Beyond the direct impact of cyberattacks, enterprises suffer from a secondary but potentially even more costly risk: operational downtime, any amount of which translates into very real damage. That’s why for CISOs, it’s key to prioritize decisions that reduce dwell time and protect their company from risk. Three strategic steps you can take this year […]
Elastic Attention: Test-time Adaptive Sparsity Ratios for Efficient Transformerscs.AI updates on arXiv.org arXiv:2601.17367v2 Announce Type: replace-cross
Abstract: The quadratic complexity of standard attention mechanisms poses a significant scalability bottleneck for large language models (LLMs) in long-context scenarios. While hybrid attention strategies that combine sparse and full attention within a single model offer a viable solution, they typically employ static computation ratios (i.e., fixed proportions of sparse versus full attention) and fail to adapt to the varying sparsity sensitivities of downstream tasks during inference. To address this issue, we propose Elastic Attention, which allows the model to dynamically adjust its overall sparsity based on the input. This is achieved by integrating a lightweight Attention Router into the existing pretrained model, which dynamically assigns each attention head to different computation modes. Within only 12 hours of training on 8xA800 GPUs, our method enables models to achieve both strong performance and efficient inference. Experiments across three long-context benchmarks on widely-used LLMs demonstrate the superiority of our method.
arXiv:2601.17367v2 Announce Type: replace-cross
Abstract: The quadratic complexity of standard attention mechanisms poses a significant scalability bottleneck for large language models (LLMs) in long-context scenarios. While hybrid attention strategies that combine sparse and full attention within a single model offer a viable solution, they typically employ static computation ratios (i.e., fixed proportions of sparse versus full attention) and fail to adapt to the varying sparsity sensitivities of downstream tasks during inference. To address this issue, we propose Elastic Attention, which allows the model to dynamically adjust its overall sparsity based on the input. This is achieved by integrating a lightweight Attention Router into the existing pretrained model, which dynamically assigns each attention head to different computation modes. Within only 12 hours of training on 8xA800 GPUs, our method enables models to achieve both strong performance and efficient inference. Experiments across three long-context benchmarks on widely-used LLMs demonstrate the superiority of our method. Read More
Closing the Data-Efficiency Gap Between Autoregressive and Masked Diffusion LLMscs.AI updates on arXiv.org arXiv:2510.09885v3 Announce Type: replace-cross
Abstract: Large language models (LLMs) are often used in environments where facts evolve, yet factual knowledge updates via fine-tuning on unstructured text often suffers from 1) reliance on compute-heavy paraphrase augmentation and 2) the reversal curse. Recent studies show diffusion large language models (dLLMs) require fewer training samples to achieve lower loss in pre-training and are more resistant to the reversal curse, suggesting dLLMs may learn new knowledge more easily than autoregressive LLMs (arLLMs). We test this hypothesis in controlled knowledge fine-tuning experiments and find that while arLLMs rely on paraphrase augmentation to generalize knowledge text into question-answering (QA) capability, dLLMs do not require paraphrases to achieve high QA accuracy. To further investigate whether the demasking objective alone can induce such a knowledge injection advantage in dLLMs regardless of their diffusion denoising paradigm, we propose masked fine-tuning for arLLMs, which prompts an arLLM to reconstruct the original text given a masked version in context. The masked fine-tuning for arLLMs substantially improves the efficacy of knowledge injection, i.e. no paraphrase needed and resistant to the reversal curse, closing the gap between arLLMs and dLLMs. We also demonstrate that the same demasking objective improves supervised fine-tuning (SFT) on math tasks over standard SFT, suggesting broader applicability of the demasking objective.
arXiv:2510.09885v3 Announce Type: replace-cross
Abstract: Large language models (LLMs) are often used in environments where facts evolve, yet factual knowledge updates via fine-tuning on unstructured text often suffers from 1) reliance on compute-heavy paraphrase augmentation and 2) the reversal curse. Recent studies show diffusion large language models (dLLMs) require fewer training samples to achieve lower loss in pre-training and are more resistant to the reversal curse, suggesting dLLMs may learn new knowledge more easily than autoregressive LLMs (arLLMs). We test this hypothesis in controlled knowledge fine-tuning experiments and find that while arLLMs rely on paraphrase augmentation to generalize knowledge text into question-answering (QA) capability, dLLMs do not require paraphrases to achieve high QA accuracy. To further investigate whether the demasking objective alone can induce such a knowledge injection advantage in dLLMs regardless of their diffusion denoising paradigm, we propose masked fine-tuning for arLLMs, which prompts an arLLM to reconstruct the original text given a masked version in context. The masked fine-tuning for arLLMs substantially improves the efficacy of knowledge injection, i.e. no paraphrase needed and resistant to the reversal curse, closing the gap between arLLMs and dLLMs. We also demonstrate that the same demasking objective improves supervised fine-tuning (SFT) on math tasks over standard SFT, suggesting broader applicability of the demasking objective. Read More