Remote Sensing Retrieval-Augmented Generation: Bridging Remote Sensing Imagery and Comprehensive Knowledge with a Multi-Modal Dataset and Retrieval-Augmented Generation Modelcs.AI updates on arXiv.org arXiv:2504.04988v2 Announce Type: replace-cross
Abstract: Recent progress in VLMs has demonstrated impressive capabilities across a variety of tasks in the natural image domain. Motivated by these advancements, the remote sensing community has begun to adopt VLMs for remote sensing vision-language tasks, including scene understanding, image captioning, and visual question answering. However, existing remote sensing VLMs typically rely on closed-set scene understanding and focus on generic scene descriptions, yet lack the ability to incorporate external knowledge. This limitation hinders their capacity for semantic reasoning over complex or context-dependent queries that involve domain-specific or world knowledge. To address these challenges, we first introduced a multimodal Remote Sensing World Knowledge (RSWK) dataset, which comprises high-resolution satellite imagery and detailed textual descriptions for 14,141 well-known landmarks from 175 countries, integrating both remote sensing domain knowledge and broader world knowledge. Building upon this dataset, we proposed a novel Remote Sensing Retrieval-Augmented Generation (RS-RAG) framework, which consists of two key components. The Multi-Modal Knowledge Vector Database Construction module encodes remote sensing imagery and associated textual knowledge into a unified vector space. The Knowledge Retrieval and Response Generation module retrieves and re-ranks relevant knowledge based on image and/or text queries, and incorporates the retrieved content into a knowledge-augmented prompt to guide the VLM in producing contextually grounded responses. We validated the effectiveness of our approach on three representative vision-language tasks, including image captioning, image classification, and visual question answering, where RS-RAG significantly outperformed state-of-the-art baselines.
arXiv:2504.04988v2 Announce Type: replace-cross
Abstract: Recent progress in VLMs has demonstrated impressive capabilities across a variety of tasks in the natural image domain. Motivated by these advancements, the remote sensing community has begun to adopt VLMs for remote sensing vision-language tasks, including scene understanding, image captioning, and visual question answering. However, existing remote sensing VLMs typically rely on closed-set scene understanding and focus on generic scene descriptions, yet lack the ability to incorporate external knowledge. This limitation hinders their capacity for semantic reasoning over complex or context-dependent queries that involve domain-specific or world knowledge. To address these challenges, we first introduced a multimodal Remote Sensing World Knowledge (RSWK) dataset, which comprises high-resolution satellite imagery and detailed textual descriptions for 14,141 well-known landmarks from 175 countries, integrating both remote sensing domain knowledge and broader world knowledge. Building upon this dataset, we proposed a novel Remote Sensing Retrieval-Augmented Generation (RS-RAG) framework, which consists of two key components. The Multi-Modal Knowledge Vector Database Construction module encodes remote sensing imagery and associated textual knowledge into a unified vector space. The Knowledge Retrieval and Response Generation module retrieves and re-ranks relevant knowledge based on image and/or text queries, and incorporates the retrieved content into a knowledge-augmented prompt to guide the VLM in producing contextually grounded responses. We validated the effectiveness of our approach on three representative vision-language tasks, including image captioning, image classification, and visual question answering, where RS-RAG significantly outperformed state-of-the-art baselines. Read More
AgentNoiseBench: Benchmarking Robustness of Tool-Using LLM Agents Under Noisy Conditioncs.AI updates on arXiv.org arXiv:2602.11348v1 Announce Type: new
Abstract: Recent advances in large language models have enabled LLM-based agents to achieve strong performance on a variety of benchmarks. However, their performance in real-world deployments often that observed on benchmark settings, especially in complex and imperfect environments. This discrepancy largely arises because prevailing training and evaluation paradigms are typically built on idealized assumptions, overlooking the inherent stochasticity and noise present in real-world interactions. To bridge this gap, we introduce AgentNoiseBench, a framework for systematically evaluating the robustness of agentic models under noisy environments. We first conduct an in-depth analysis of biases and uncertainties in real-world scenarios and categorize environmental noise into two primary types: user-noise and tool-noise. Building on this analysis, we develop an automated pipeline that injects controllable noise into existing agent-centric benchmarks while preserving task solvability. Leveraging this pipeline, we perform extensive evaluations across a wide range of models with diverse architectures and parameter scales. Our results reveal consistent performance variations under different noise conditions, highlighting the sensitivity of current agentic models to realistic environmental perturbations.
arXiv:2602.11348v1 Announce Type: new
Abstract: Recent advances in large language models have enabled LLM-based agents to achieve strong performance on a variety of benchmarks. However, their performance in real-world deployments often that observed on benchmark settings, especially in complex and imperfect environments. This discrepancy largely arises because prevailing training and evaluation paradigms are typically built on idealized assumptions, overlooking the inherent stochasticity and noise present in real-world interactions. To bridge this gap, we introduce AgentNoiseBench, a framework for systematically evaluating the robustness of agentic models under noisy environments. We first conduct an in-depth analysis of biases and uncertainties in real-world scenarios and categorize environmental noise into two primary types: user-noise and tool-noise. Building on this analysis, we develop an automated pipeline that injects controllable noise into existing agent-centric benchmarks while preserving task solvability. Leveraging this pipeline, we perform extensive evaluations across a wide range of models with diverse architectures and parameter scales. Our results reveal consistent performance variations under different noise conditions, highlighting the sensitivity of current agentic models to realistic environmental perturbations. Read More
Test-Time Alignment of LLMs via Sampling-Based Optimal Control in pre-logit spacecs.AI updates on arXiv.org arXiv:2510.26219v2 Announce Type: replace-cross
Abstract: Test-time alignment of large language models (LLMs) attracts attention because fine-tuning LLMs requires high computational costs. In this paper, we propose a new test-time alignment method called adaptive importance sampling on pre-logits (AISP) on the basis of the sampling-based model predictive control with the stochastic control input. AISP applies the Gaussian perturbation into pre-logits, which are outputs of the penultimate layer, so as to maximize expected rewards with respect to the mean of the perturbation. We demonstrate that the optimal mean is obtained by importance sampling with sampled rewards. AISP outperforms best-of-n sampling in terms of rewards over the number of used samples and achieves higher rewards than other reward-based test-time alignment methods.
arXiv:2510.26219v2 Announce Type: replace-cross
Abstract: Test-time alignment of large language models (LLMs) attracts attention because fine-tuning LLMs requires high computational costs. In this paper, we propose a new test-time alignment method called adaptive importance sampling on pre-logits (AISP) on the basis of the sampling-based model predictive control with the stochastic control input. AISP applies the Gaussian perturbation into pre-logits, which are outputs of the penultimate layer, so as to maximize expected rewards with respect to the mean of the perturbation. We demonstrate that the optimal mean is obtained by importance sampling with sampled rewards. AISP outperforms best-of-n sampling in terms of rewards over the number of used samples and achieves higher rewards than other reward-based test-time alignment methods. Read More
Fin-RATE: A Real-world Financial Analytics and Tracking Evaluation Benchmark for LLMs on SEC Filingscs.AI updates on arXiv.org arXiv:2602.07294v2 Announce Type: replace-cross
Abstract: With the increasing deployment of Large Language Models (LLMs) in the finance domain, LLMs are increasingly expected to parse complex regulatory disclosures. However, existing benchmarks often focus on isolated details, failing to reflect the complexity of professional analysis that requires synthesizing information across multiple documents, reporting periods, and corporate entities. Furthermore, these benchmarks do not disentangle whether errors arise from retrieval failures, generation inaccuracies, domain-specific reasoning mistakes, or misinterpretation of the query or context, making it difficult to precisely diagnose performance bottlenecks. To bridge these gaps, we introduce Fin-RATE, a benchmark built on U.S. Securities and Exchange Commission (SEC) filings and mirroring financial analyst workflows through three pathways: detail-oriented reasoning within individual disclosures, cross-entity comparison under shared topics, and longitudinal tracking of the same firm across reporting periods. We benchmark 17 leading LLMs, spanning open-source, closed-source, and finance-specialized models, under both ground-truth context and retrieval-augmented settings. Results show substantial performance degradation, with accuracy dropping by 18.60% and 14.35% as tasks shift from single-document reasoning to longitudinal and cross-entity analysis. This degradation is driven by increased comparison hallucinations, temporal and entity mismatches, and is further reflected in declines in reasoning quality and factual consistency–limitations that existing benchmarks have yet to formally categorize or quantify.
arXiv:2602.07294v2 Announce Type: replace-cross
Abstract: With the increasing deployment of Large Language Models (LLMs) in the finance domain, LLMs are increasingly expected to parse complex regulatory disclosures. However, existing benchmarks often focus on isolated details, failing to reflect the complexity of professional analysis that requires synthesizing information across multiple documents, reporting periods, and corporate entities. Furthermore, these benchmarks do not disentangle whether errors arise from retrieval failures, generation inaccuracies, domain-specific reasoning mistakes, or misinterpretation of the query or context, making it difficult to precisely diagnose performance bottlenecks. To bridge these gaps, we introduce Fin-RATE, a benchmark built on U.S. Securities and Exchange Commission (SEC) filings and mirroring financial analyst workflows through three pathways: detail-oriented reasoning within individual disclosures, cross-entity comparison under shared topics, and longitudinal tracking of the same firm across reporting periods. We benchmark 17 leading LLMs, spanning open-source, closed-source, and finance-specialized models, under both ground-truth context and retrieval-augmented settings. Results show substantial performance degradation, with accuracy dropping by 18.60% and 14.35% as tasks shift from single-document reasoning to longitudinal and cross-entity analysis. This degradation is driven by increased comparison hallucinations, temporal and entity mismatches, and is further reflected in declines in reasoning quality and factual consistency–limitations that existing benchmarks have yet to formally categorize or quantify. Read More
Improving Neural Retrieval with Attribution-Guided Query Rewritingcs.AI updates on arXiv.org arXiv:2602.11841v1 Announce Type: cross
Abstract: Neural retrievers are effective but brittle: underspecified or ambiguous queries can misdirect ranking even when relevant documents exist. Existing approaches address this brittleness only partially: LLMs rewrite queries without retriever feedback, and explainability methods identify misleading tokens but are used for post-hoc analysis. We close this loop and propose an attribution-guided query rewriting method that uses token-level explanations to guide query rewriting. For each query, we compute gradient-based token attributions from the retriever and then use these scores as soft guidance in a structured prompt to an LLM that clarifies weak or misleading query components while preserving intent. Evaluated on BEIR collections, the resulting rewrites consistently improve retrieval effectiveness over strong baselines, with larger gains for implicit or ambiguous information needs.
arXiv:2602.11841v1 Announce Type: cross
Abstract: Neural retrievers are effective but brittle: underspecified or ambiguous queries can misdirect ranking even when relevant documents exist. Existing approaches address this brittleness only partially: LLMs rewrite queries without retriever feedback, and explainability methods identify misleading tokens but are used for post-hoc analysis. We close this loop and propose an attribution-guided query rewriting method that uses token-level explanations to guide query rewriting. For each query, we compute gradient-based token attributions from the retriever and then use these scores as soft guidance in a structured prompt to an LLM that clarifies weak or misleading query components while preserving intent. Evaluated on BEIR collections, the resulting rewrites consistently improve retrieval effectiveness over strong baselines, with larger gains for implicit or ambiguous information needs. Read More
Manifold-Aware Temporal Domain Generalization for Large Language Modelscs.AI updates on arXiv.org arXiv:2602.11965v1 Announce Type: cross
Abstract: Temporal distribution shifts are pervasive in real-world deployments of Large Language Models (LLMs), where data evolves continuously over time. While Temporal Domain Generalization (TDG) seeks to model such structured evolution, existing approaches characterize model adaptation in the full parameter space. This formulation becomes computationally infeasible for modern LLMs. This paper introduces a geometric reformulation of TDG under parameter-efficient fine-tuning. We establish that the low-dimensional temporal structure underlying model evolution can be preserved under parameter-efficient reparameterization, enabling temporal modeling without operating in the ambient parameter space. Building on this principle, we propose Manifold-aware Temporal LoRA (MaT-LoRA), which constrains temporal updates to a shared low-dimensional manifold within a low-rank adaptation subspace, and models its evolution through a structured temporal core. This reparameterization dramatically reduces temporal modeling complexity while retaining expressive power. Extensive experiments on synthetic and real-world datasets, including scientific documents, news publishers, and review ratings, demonstrate that MaT-LoRA achieves superior temporal generalization performance with practical scalability for LLMs.
arXiv:2602.11965v1 Announce Type: cross
Abstract: Temporal distribution shifts are pervasive in real-world deployments of Large Language Models (LLMs), where data evolves continuously over time. While Temporal Domain Generalization (TDG) seeks to model such structured evolution, existing approaches characterize model adaptation in the full parameter space. This formulation becomes computationally infeasible for modern LLMs. This paper introduces a geometric reformulation of TDG under parameter-efficient fine-tuning. We establish that the low-dimensional temporal structure underlying model evolution can be preserved under parameter-efficient reparameterization, enabling temporal modeling without operating in the ambient parameter space. Building on this principle, we propose Manifold-aware Temporal LoRA (MaT-LoRA), which constrains temporal updates to a shared low-dimensional manifold within a low-rank adaptation subspace, and models its evolution through a structured temporal core. This reparameterization dramatically reduces temporal modeling complexity while retaining expressive power. Extensive experiments on synthetic and real-world datasets, including scientific documents, news publishers, and review ratings, demonstrate that MaT-LoRA achieves superior temporal generalization performance with practical scalability for LLMs. Read More
DeepRead: Document Structure-Aware Reasoning to Enhance Agentic Searchcs.AI updates on arXiv.org arXiv:2602.05014v3 Announce Type: replace
Abstract: With the rapid advancement of tool-use capabilities in Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) is shifting from static, one-shot retrieval toward autonomous, multi-turn evidence acquisition. However, existing agentic search frameworks typically treat long documents as flat collections of unstructured chunks, disregarding the native hierarchical organization and sequential logic essential for human comprehension. To bridge this gap, we introduce textbf{DeepRead}, a structure-aware document reasoning agent designed to operationalize document-native structural priors into actionable reasoning capabilities. Leveraging the structural fidelity of modern OCR, DeepRead constructs a paragraph-level, coordinate-based navigation system and equips the LLM with two synergistic tools: textsf{Retrieve} for scanning-aware localization, and textsf{ReadSection} for contiguous, order-preserving reading within specific hierarchical scopes. This design elicits a human-like “locate-then-read” reasoning paradigm, effectively mitigating the context fragmentation inherent in traditional retrieval methods. Extensive evaluations across four benchmarks spanning diverse document types demonstrate that DeepRead outperforms Search-o1-style agentic search baselines by an average of 10.3%. Fine-grained behavioral analysis further confirms that DeepRead autonomously adopts human-aligned reading strategies, validating the critical role of structural awareness in achieving precise document reasoning. Our code is available at https://github.com/Zhanli-Li/DeepRead.
arXiv:2602.05014v3 Announce Type: replace
Abstract: With the rapid advancement of tool-use capabilities in Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) is shifting from static, one-shot retrieval toward autonomous, multi-turn evidence acquisition. However, existing agentic search frameworks typically treat long documents as flat collections of unstructured chunks, disregarding the native hierarchical organization and sequential logic essential for human comprehension. To bridge this gap, we introduce textbf{DeepRead}, a structure-aware document reasoning agent designed to operationalize document-native structural priors into actionable reasoning capabilities. Leveraging the structural fidelity of modern OCR, DeepRead constructs a paragraph-level, coordinate-based navigation system and equips the LLM with two synergistic tools: textsf{Retrieve} for scanning-aware localization, and textsf{ReadSection} for contiguous, order-preserving reading within specific hierarchical scopes. This design elicits a human-like “locate-then-read” reasoning paradigm, effectively mitigating the context fragmentation inherent in traditional retrieval methods. Extensive evaluations across four benchmarks spanning diverse document types demonstrate that DeepRead outperforms Search-o1-style agentic search baselines by an average of 10.3%. Fine-grained behavioral analysis further confirms that DeepRead autonomously adopts human-aligned reading strategies, validating the critical role of structural awareness in achieving precise document reasoning. Our code is available at https://github.com/Zhanli-Li/DeepRead. Read More
Google DeepMind Introduces Aletheia: The AI Agent Moving from Math Competitions to Fully Autonomous Professional Research DiscoveriesMarkTechPost Google DeepMind team has introduced Aletheia, a specialized AI agent designed to bridge the gap between competition-level math and professional research. While models achieved gold-medal standards at the 2025 International Mathematical Olympiad (IMO), research requires navigating vast literature and constructing long-horizon proofs. Aletheia solves this by iteratively generating, verifying, and revising solutions in natural language.
The post Google DeepMind Introduces Aletheia: The AI Agent Moving from Math Competitions to Fully Autonomous Professional Research Discoveries appeared first on MarkTechPost.
Google DeepMind team has introduced Aletheia, a specialized AI agent designed to bridge the gap between competition-level math and professional research. While models achieved gold-medal standards at the 2025 International Mathematical Olympiad (IMO), research requires navigating vast literature and constructing long-horizon proofs. Aletheia solves this by iteratively generating, verifying, and revising solutions in natural language.
The post Google DeepMind Introduces Aletheia: The AI Agent Moving from Math Competitions to Fully Autonomous Professional Research Discoveries appeared first on MarkTechPost. Read More
CISA ordered federal agencies on Thursday to secure their systems against a critical Microsoft Configuration Manager vulnerability patched in October 2024 and now exploited in attacks. […] Read More
AI deployment in financial services hits an inflection point as Singapore leads the shift to productionAI News AI deployment in financial services has crossed a critical threshold, with only 2% of institutions globally reporting no AI use whatsoever—a dramatic indicator that the technology has moved decisively from boardroom discussion to operational reality. New research from Finastra surveying 1,509 senior leaders across 11 markets reveals that Singapore financial institutions are leading this transition,
The post AI deployment in financial services hits an inflection point as Singapore leads the shift to production appeared first on AI News.
AI deployment in financial services has crossed a critical threshold, with only 2% of institutions globally reporting no AI use whatsoever—a dramatic indicator that the technology has moved decisively from boardroom discussion to operational reality. New research from Finastra surveying 1,509 senior leaders across 11 markets reveals that Singapore financial institutions are leading this transition,
The post AI deployment in financial services hits an inflection point as Singapore leads the shift to production appeared first on AI News. Read More