Author: Derrick D. JacksonTitle: Founder & Senior Director of Cloud Security Architecture & RiskCredentials: CISSP, CRISC, CCSPLast updated October 24th, 2025 Hello Everyone, Help us grow our community by sharing and/or supporting us on other platforms. This allow us to show verification that what we are doing is valued. It also allows us to plan and […]
PlanU: Large Language Model Reasoning through Planning under Uncertaintycs.AI updates on arXiv.org arXiv:2510.18442v2 Announce Type: replace
Abstract: Large Language Models (LLMs) are increasingly being explored across a range of reasoning tasks. However, LLMs sometimes struggle with reasoning tasks under uncertainty that are relatively easy for humans, such as planning actions in stochastic environments. The adoption of LLMs for reasoning is impeded by uncertainty challenges, such as LLM uncertainty and environmental uncertainty. LLM uncertainty arises from the stochastic sampling process inherent to LLMs. Most LLM-based Decision-Making (LDM) approaches address LLM uncertainty through multiple reasoning chains or search trees. However, these approaches overlook environmental uncertainty, which leads to poor performance in environments with stochastic state transitions. Some recent LDM approaches deal with uncertainty by forecasting the probability of unknown variables. However, they are not designed for multi-step reasoning tasks that require interaction with the environment. To address uncertainty in LLM decision-making, we introduce PlanU, an LLM-based planning method that captures uncertainty within Monte Carlo Tree Search (MCTS). PlanU models the return of each node in the MCTS as a quantile distribution, which uses a set of quantiles to represent the return distribution. To balance exploration and exploitation during tree search, PlanU introduces an Upper Confidence Bounds with Curiosity (UCC) score which estimates the uncertainty of MCTS nodes. Through extensive experiments, we demonstrate the effectiveness of PlanU in LLM-based reasoning tasks under uncertainty.
arXiv:2510.18442v2 Announce Type: replace
Abstract: Large Language Models (LLMs) are increasingly being explored across a range of reasoning tasks. However, LLMs sometimes struggle with reasoning tasks under uncertainty that are relatively easy for humans, such as planning actions in stochastic environments. The adoption of LLMs for reasoning is impeded by uncertainty challenges, such as LLM uncertainty and environmental uncertainty. LLM uncertainty arises from the stochastic sampling process inherent to LLMs. Most LLM-based Decision-Making (LDM) approaches address LLM uncertainty through multiple reasoning chains or search trees. However, these approaches overlook environmental uncertainty, which leads to poor performance in environments with stochastic state transitions. Some recent LDM approaches deal with uncertainty by forecasting the probability of unknown variables. However, they are not designed for multi-step reasoning tasks that require interaction with the environment. To address uncertainty in LLM decision-making, we introduce PlanU, an LLM-based planning method that captures uncertainty within Monte Carlo Tree Search (MCTS). PlanU models the return of each node in the MCTS as a quantile distribution, which uses a set of quantiles to represent the return distribution. To balance exploration and exploitation during tree search, PlanU introduces an Upper Confidence Bounds with Curiosity (UCC) score which estimates the uncertainty of MCTS nodes. Through extensive experiments, we demonstrate the effectiveness of PlanU in LLM-based reasoning tasks under uncertainty. Read More
Decoupling Augmentation Bias in Prompt Learning for Vision-Language Modelscs.AI updates on arXiv.org arXiv:2511.03367v1 Announce Type: cross
Abstract: Recent advances in large-scale vision and language models have led to significant progress in zero-shot learning tasks. Methods such as CoOp and CoCoOp have shown that replacing handcrafted prompts with learnable vectors, known as prompt learning, can result in improved performance. However, these models often struggle to generalize to entirely unseen categories. While traditional zero-shot learning techniques benefit from various data augmentation strategies, prompt learning has primarily focused on text-based modifications, leaving the potential of image-based augmentation largely unexplored. In this work, we explore how image-level augmentations, particularly those that introduce attribute-specific variations, can support and enhance prompt learning. Our analysis examines the interaction between these augmentations and soft prompt frameworks, revealing their potential to improve generalization. We also identify a limitation in existing methods, such as CoCoOp, which do not provide explicit guidance for learning prompts that focus on semantically meaningful visual features. To address this, we propose Adding Attributes to Prompt Learning, AAPL, a novel method that introduces adversarial token embeddings to decouple superficial visual variations introduced by augmentation from class-relevant semantic representations. This decoupling enables the learned prompts to concentrate on visually discriminative features that align with the target categories. We conduct comprehensive experiments on eleven benchmark datasets, and AAPL consistently outperforms existing methods across few-shot, zero-shot, cross-dataset, and domain generalization settings. Our source code is publicly available at: https://github.com/Gahyeonkim09/AAPL
arXiv:2511.03367v1 Announce Type: cross
Abstract: Recent advances in large-scale vision and language models have led to significant progress in zero-shot learning tasks. Methods such as CoOp and CoCoOp have shown that replacing handcrafted prompts with learnable vectors, known as prompt learning, can result in improved performance. However, these models often struggle to generalize to entirely unseen categories. While traditional zero-shot learning techniques benefit from various data augmentation strategies, prompt learning has primarily focused on text-based modifications, leaving the potential of image-based augmentation largely unexplored. In this work, we explore how image-level augmentations, particularly those that introduce attribute-specific variations, can support and enhance prompt learning. Our analysis examines the interaction between these augmentations and soft prompt frameworks, revealing their potential to improve generalization. We also identify a limitation in existing methods, such as CoCoOp, which do not provide explicit guidance for learning prompts that focus on semantically meaningful visual features. To address this, we propose Adding Attributes to Prompt Learning, AAPL, a novel method that introduces adversarial token embeddings to decouple superficial visual variations introduced by augmentation from class-relevant semantic representations. This decoupling enables the learned prompts to concentrate on visually discriminative features that align with the target categories. We conduct comprehensive experiments on eleven benchmark datasets, and AAPL consistently outperforms existing methods across few-shot, zero-shot, cross-dataset, and domain generalization settings. Our source code is publicly available at: https://github.com/Gahyeonkim09/AAPL Read More
Comparing the Performance of LLMs in RAG-based Question-Answering: A Case Study in Computer Science Literaturecs.AI updates on arXiv.org arXiv:2511.03261v1 Announce Type: cross
Abstract: Retrieval Augmented Generation (RAG) is emerging as a powerful technique to enhance the capabilities of Generative AI models by reducing hallucination. Thus, the increasing prominence of RAG alongside Large Language Models (LLMs) has sparked interest in comparing the performance of different LLMs in question-answering (QA) in diverse domains. This study compares the performance of four open-source LLMs, Mistral-7b-instruct, LLaMa2-7b-chat, Falcon-7b-instruct and Orca-mini-v3-7b, and OpenAI’s trending GPT-3.5 over QA tasks within the computer science literature leveraging RAG support. Evaluation metrics employed in the study include accuracy and precision for binary questions and ranking by a human expert, ranking by Google’s AI model Gemini, alongside cosine similarity for long-answer questions. GPT-3.5, when paired with RAG, effectively answers binary and long-answer questions, reaffirming its status as an advanced LLM. Regarding open-source LLMs, Mistral AI’s Mistral-7b-instruct paired with RAG surpasses the rest in answering both binary and long-answer questions. However, among the open-source LLMs, Orca-mini-v3-7b reports the shortest average latency in generating responses, whereas LLaMa2-7b-chat by Meta reports the highest average latency. This research underscores the fact that open-source LLMs, too, can go hand in hand with proprietary models like GPT-3.5 with better infrastructure.
arXiv:2511.03261v1 Announce Type: cross
Abstract: Retrieval Augmented Generation (RAG) is emerging as a powerful technique to enhance the capabilities of Generative AI models by reducing hallucination. Thus, the increasing prominence of RAG alongside Large Language Models (LLMs) has sparked interest in comparing the performance of different LLMs in question-answering (QA) in diverse domains. This study compares the performance of four open-source LLMs, Mistral-7b-instruct, LLaMa2-7b-chat, Falcon-7b-instruct and Orca-mini-v3-7b, and OpenAI’s trending GPT-3.5 over QA tasks within the computer science literature leveraging RAG support. Evaluation metrics employed in the study include accuracy and precision for binary questions and ranking by a human expert, ranking by Google’s AI model Gemini, alongside cosine similarity for long-answer questions. GPT-3.5, when paired with RAG, effectively answers binary and long-answer questions, reaffirming its status as an advanced LLM. Regarding open-source LLMs, Mistral AI’s Mistral-7b-instruct paired with RAG surpasses the rest in answering both binary and long-answer questions. However, among the open-source LLMs, Orca-mini-v3-7b reports the shortest average latency in generating responses, whereas LLaMa2-7b-chat by Meta reports the highest average latency. This research underscores the fact that open-source LLMs, too, can go hand in hand with proprietary models like GPT-3.5 with better infrastructure. Read More
Learning Under Laws: A Constraint-Projected Neural PDE Solver that Eliminates Hallucinationscs.AI updates on arXiv.org arXiv:2511.03578v1 Announce Type: cross
Abstract: Neural networks can approximate solutions to partial differential equations, but they often break the very laws they are meant to model-creating mass from nowhere, drifting shocks, or violating conservation and entropy. We address this by training within the laws of physics rather than beside them. Our framework, called Constraint-Projected Learning (CPL), keeps every update physically admissible by projecting network outputs onto the intersection of constraint sets defined by conservation, Rankine-Hugoniot balance, entropy, and positivity. The projection is differentiable and adds only about 10% computational overhead, making it fully compatible with back-propagation. We further stabilize training with total-variation damping (TVD) to suppress small oscillations and a rollout curriculum that enforces consistency over long prediction horizons. Together, these mechanisms eliminate both hard and soft violations: conservation holds at machine precision, total-variation growth vanishes, and entropy and error remain bounded. On Burgers and Euler systems, CPL produces stable, physically lawful solutions without loss of accuracy. Instead of hoping neural solvers will respect physics, CPL makes that behavior an intrinsic property of the learning process.
arXiv:2511.03578v1 Announce Type: cross
Abstract: Neural networks can approximate solutions to partial differential equations, but they often break the very laws they are meant to model-creating mass from nowhere, drifting shocks, or violating conservation and entropy. We address this by training within the laws of physics rather than beside them. Our framework, called Constraint-Projected Learning (CPL), keeps every update physically admissible by projecting network outputs onto the intersection of constraint sets defined by conservation, Rankine-Hugoniot balance, entropy, and positivity. The projection is differentiable and adds only about 10% computational overhead, making it fully compatible with back-propagation. We further stabilize training with total-variation damping (TVD) to suppress small oscillations and a rollout curriculum that enforces consistency over long prediction horizons. Together, these mechanisms eliminate both hard and soft violations: conservation holds at machine precision, total-variation growth vanishes, and entropy and error remain bounded. On Burgers and Euler systems, CPL produces stable, physically lawful solutions without loss of accuracy. Instead of hoping neural solvers will respect physics, CPL makes that behavior an intrinsic property of the learning process. Read More
A Theoretical Framework for Environmental Similarity and Vessel Mobility as Coupled Predictors of Marine Invasive Species Pathwayscs.AI updates on arXiv.org arXiv:2511.03499v1 Announce Type: cross
Abstract: Marine invasive species spread through global shipping and generate substantial ecological and economic impacts. Traditional risk assessments require detailed records of ballast water and traffic patterns, which are often incomplete, limiting global coverage. This work advances a theoretical framework that quantifies invasion risk by combining environmental similarity across ports with observed and forecasted maritime mobility. Climate-based feature representations characterize each port’s marine conditions, while mobility networks derived from Automatic Identification System data capture vessel flows and potential transfer pathways. Clustering and metric learning reveal climate analogues and enable the estimation of species survival likelihood along shipping routes. A temporal link prediction model captures how traffic patterns may change under shifting environmental conditions. The resulting fusion of environmental similarity and predicted mobility provides exposure estimates at the port and voyage levels, supporting targeted monitoring, routing adjustments, and management interventions.
arXiv:2511.03499v1 Announce Type: cross
Abstract: Marine invasive species spread through global shipping and generate substantial ecological and economic impacts. Traditional risk assessments require detailed records of ballast water and traffic patterns, which are often incomplete, limiting global coverage. This work advances a theoretical framework that quantifies invasion risk by combining environmental similarity across ports with observed and forecasted maritime mobility. Climate-based feature representations characterize each port’s marine conditions, while mobility networks derived from Automatic Identification System data capture vessel flows and potential transfer pathways. Clustering and metric learning reveal climate analogues and enable the estimation of species survival likelihood along shipping routes. A temporal link prediction model captures how traffic patterns may change under shifting environmental conditions. The resulting fusion of environmental similarity and predicted mobility provides exposure estimates at the port and voyage levels, supporting targeted monitoring, routing adjustments, and management interventions. Read More
DQN Performance with Epsilon Greedy Policies and Prioritized Experience Replaycs.AI updates on arXiv.org arXiv:2511.03670v1 Announce Type: cross
Abstract: We present a detailed study of Deep Q-Networks in finite environments, emphasizing the impact of epsilon-greedy exploration schedules and prioritized experience replay. Through systematic experimentation, we evaluate how variations in epsilon decay schedules affect learning efficiency, convergence behavior, and reward optimization. We investigate how prioritized experience replay leads to faster convergence and higher returns and show empirical results comparing uniform, no replay, and prioritized strategies across multiple simulations. Our findings illuminate the trade-offs and interactions between exploration strategies and memory management in DQN training, offering practical recommendations for robust reinforcement learning in resource-constrained settings.
arXiv:2511.03670v1 Announce Type: cross
Abstract: We present a detailed study of Deep Q-Networks in finite environments, emphasizing the impact of epsilon-greedy exploration schedules and prioritized experience replay. Through systematic experimentation, we evaluate how variations in epsilon decay schedules affect learning efficiency, convergence behavior, and reward optimization. We investigate how prioritized experience replay leads to faster convergence and higher returns and show empirical results comparing uniform, no replay, and prioritized strategies across multiple simulations. Our findings illuminate the trade-offs and interactions between exploration strategies and memory management in DQN training, offering practical recommendations for robust reinforcement learning in resource-constrained settings. Read More
Multi-Agent SQL Assistant, Part 2: Building a RAG ManagerTowards Data Science A hands-on guide to comparing multiple RAG strategies — Keyword, FAISS, and Chroma
The post Multi-Agent SQL Assistant, Part 2: Building a RAG Manager appeared first on Towards Data Science.
A hands-on guide to comparing multiple RAG strategies — Keyword, FAISS, and Chroma
The post Multi-Agent SQL Assistant, Part 2: Building a RAG Manager appeared first on Towards Data Science. Read More
MIT researchers propose a new model for legible, modular softwareMIT News – Machine learning The coding framework uses modular concepts and simple synchronization rules to make software clearer, safer, and easier for LLMs to generate.
The coding framework uses modular concepts and simple synchronization rules to make software clearer, safer, and easier for LLMs to generate. Read More
10 Polars One-Liners for Speeding Up Data WorkflowsKDnuggets Check out these 10 Polars one-liners intended to speed up tasks you normally perform with Pandas.
Check out these 10 Polars one-liners intended to speed up tasks you normally perform with Pandas. Read More