Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

News
AI News & Insights Featured Image

Advanced Tool for Traffic Crash Analysis: An AI-Driven Multi-Agent Approach to Pre-Crash Reconstruction AI updates on arXiv.org

Advanced Tool for Traffic Crash Analysis: An AI-Driven Multi-Agent Approach to Pre-Crash Reconstructioncs.AI updates on arXiv.org arXiv:2511.10853v1 Announce Type: new
Abstract: Traffic collision reconstruction traditionally relies on human expertise, often yielding inconsistent results when analyzing incomplete multimodal data. This study develops a multi-agent AI framework that reconstructs pre-crash scenarios and infers vehicle behaviors from fragmented collision data. We present a two-phase collaborative framework combining reconstruction and reasoning phases. The system processes 277 rear-end lead vehicle deceleration (LVD) collisions from the Crash Investigation Sampling System, integrating textual crash reports, structured tabular data, and visual scene diagrams. Phase I generates natural-language crash reconstructions from multimodal inputs. Phase II performs in-depth crash reasoning by combining these reconstructions with temporal Event Data Recorder (EDR).For validation, we applied it to all LVD cases, focusing on a subset of 39 complex crashes where multiple EDR records per collision introduced ambiguity (e.g., due to missing or conflicting data).The evaluation of the 39 LVD crash cases revealed our framework achieved perfect accuracy across all test cases, successfully identifying both the most relevant EDR event and correctly distinguishing striking versus struck vehicles, surpassing the 92% accuracy achieved by human researchers on the same challenging dataset. The system maintained robust performance even when processing incomplete data, including missing or erroneous EDR records and ambiguous scene diagrams. This study demonstrates superior AI capabilities in processing heterogeneous collision data, providing unprecedented precision in reconstructing impact dynamics and characterizing pre-crash behaviors.

 arXiv:2511.10853v1 Announce Type: new
Abstract: Traffic collision reconstruction traditionally relies on human expertise, often yielding inconsistent results when analyzing incomplete multimodal data. This study develops a multi-agent AI framework that reconstructs pre-crash scenarios and infers vehicle behaviors from fragmented collision data. We present a two-phase collaborative framework combining reconstruction and reasoning phases. The system processes 277 rear-end lead vehicle deceleration (LVD) collisions from the Crash Investigation Sampling System, integrating textual crash reports, structured tabular data, and visual scene diagrams. Phase I generates natural-language crash reconstructions from multimodal inputs. Phase II performs in-depth crash reasoning by combining these reconstructions with temporal Event Data Recorder (EDR).For validation, we applied it to all LVD cases, focusing on a subset of 39 complex crashes where multiple EDR records per collision introduced ambiguity (e.g., due to missing or conflicting data).The evaluation of the 39 LVD crash cases revealed our framework achieved perfect accuracy across all test cases, successfully identifying both the most relevant EDR event and correctly distinguishing striking versus struck vehicles, surpassing the 92% accuracy achieved by human researchers on the same challenging dataset. The system maintained robust performance even when processing incomplete data, including missing or erroneous EDR records and ambiguous scene diagrams. This study demonstrates superior AI capabilities in processing heterogeneous collision data, providing unprecedented precision in reconstructing impact dynamics and characterizing pre-crash behaviors. Read More  

News
AI News & Insights Featured Image

HARNESS: Human-Agent Risk Navigation and Event Safety System for Proactive Hazard Forecasting in High-Risk DOE Environments AI updates on arXiv.org

HARNESS: Human-Agent Risk Navigation and Event Safety System for Proactive Hazard Forecasting in High-Risk DOE Environmentscs.AI updates on arXiv.org arXiv:2511.10810v1 Announce Type: new
Abstract: Operational safety at mission-critical work sites is a top priority given the complex and hazardous nature of daily tasks. This paper presents the Human-Agent Risk Navigation and Event Safety System (HARNESS), a modular AI framework designed to forecast hazardous events and analyze operational risks in U.S. Department of Energy (DOE) environments. HARNESS integrates Large Language Models (LLMs) with structured work data, historical event retrieval, and risk analysis to proactively identify potential hazards. A human-in-the-loop mechanism allows subject matter experts (SMEs) to refine predictions, creating an adaptive learning loop that enhances performance over time. By combining SME collaboration with iterative agentic reasoning, HARNESS improves the reliability and efficiency of predictive safety systems. Preliminary deployment shows promising results, with future work focusing on quantitative evaluation of accuracy, SME agreement, and decision latency reduction.

 arXiv:2511.10810v1 Announce Type: new
Abstract: Operational safety at mission-critical work sites is a top priority given the complex and hazardous nature of daily tasks. This paper presents the Human-Agent Risk Navigation and Event Safety System (HARNESS), a modular AI framework designed to forecast hazardous events and analyze operational risks in U.S. Department of Energy (DOE) environments. HARNESS integrates Large Language Models (LLMs) with structured work data, historical event retrieval, and risk analysis to proactively identify potential hazards. A human-in-the-loop mechanism allows subject matter experts (SMEs) to refine predictions, creating an adaptive learning loop that enhances performance over time. By combining SME collaboration with iterative agentic reasoning, HARNESS improves the reliability and efficiency of predictive safety systems. Preliminary deployment shows promising results, with future work focusing on quantitative evaluation of accuracy, SME agreement, and decision latency reduction. Read More  

News
AI News & Insights Featured Image

From Efficiency to Adaptivity: A Deeper Look at Adaptive Reasoning in Large Language Models AI updates on arXiv.org

From Efficiency to Adaptivity: A Deeper Look at Adaptive Reasoning in Large Language Modelscs.AI updates on arXiv.org arXiv:2511.10788v1 Announce Type: new
Abstract: Recent advances in large language models (LLMs) have made reasoning a central benchmark for evaluating intelligence. While prior surveys focus on efficiency by examining how to shorten reasoning chains or reduce computation, this view overlooks a fundamental challenge: current LLMs apply uniform reasoning strategies regardless of task complexity, generating long traces for trivial problems while failing to extend reasoning for difficult tasks. This survey reframes reasoning through the lens of {adaptivity}: the capability to allocate reasoning effort based on input characteristics such as difficulty and uncertainty. We make three contributions. First, we formalize deductive, inductive, and abductive reasoning within the LLM context, connecting these classical cognitive paradigms with their algorithmic realizations. Second, we formalize adaptive reasoning as a control-augmented policy optimization problem balancing task performance with computational cost, distinguishing learned policies from inference-time control mechanisms. Third, we propose a systematic taxonomy organizing existing methods into training-based approaches that internalize adaptivity through reinforcement learning, supervised fine-tuning, and learned controllers, and training-free approaches that achieve adaptivity through prompt conditioning, feedback-driven halting, and modular composition. This framework clarifies how different mechanisms realize adaptive reasoning in practice and enables systematic comparison across diverse strategies. We conclude by identifying open challenges in self-evaluation, meta-reasoning, and human-aligned reasoning control.

 arXiv:2511.10788v1 Announce Type: new
Abstract: Recent advances in large language models (LLMs) have made reasoning a central benchmark for evaluating intelligence. While prior surveys focus on efficiency by examining how to shorten reasoning chains or reduce computation, this view overlooks a fundamental challenge: current LLMs apply uniform reasoning strategies regardless of task complexity, generating long traces for trivial problems while failing to extend reasoning for difficult tasks. This survey reframes reasoning through the lens of {adaptivity}: the capability to allocate reasoning effort based on input characteristics such as difficulty and uncertainty. We make three contributions. First, we formalize deductive, inductive, and abductive reasoning within the LLM context, connecting these classical cognitive paradigms with their algorithmic realizations. Second, we formalize adaptive reasoning as a control-augmented policy optimization problem balancing task performance with computational cost, distinguishing learned policies from inference-time control mechanisms. Third, we propose a systematic taxonomy organizing existing methods into training-based approaches that internalize adaptivity through reinforcement learning, supervised fine-tuning, and learned controllers, and training-free approaches that achieve adaptivity through prompt conditioning, feedback-driven halting, and modular composition. This framework clarifies how different mechanisms realize adaptive reasoning in practice and enables systematic comparison across diverse strategies. We conclude by identifying open challenges in self-evaluation, meta-reasoning, and human-aligned reasoning control. Read More  

News
AI News & Insights Featured Image

Short-Window Sliding Learning for Real-Time Violence Detection via LLM-based Auto-Labelingcs.AI updates on arXiv.org

Short-Window Sliding Learning for Real-Time Violence Detection via LLM-based Auto-Labelingcs.AI updates on arXiv.org arXiv:2511.10866v1 Announce Type: cross
Abstract: This paper proposes a Short-Window Sliding Learning framework for real-time violence detection in CCTV footages. Unlike conventional long-video training approaches, the proposed method divides videos into 1-2 second clips and applies Large Language Model (LLM)-based auto-caption labeling to construct fine-grained datasets. Each short clip fully utilizes all frames to preserve temporal continuity, enabling precise recognition of rapid violent events. Experiments demonstrate that the proposed method achieves 95.25% accuracy on RWF-2000 and significantly improves performance on long videos (UCF-Crime: 83.25%), confirming its strong generalization and real-time applicability in intelligent surveillance systems.

 arXiv:2511.10866v1 Announce Type: cross
Abstract: This paper proposes a Short-Window Sliding Learning framework for real-time violence detection in CCTV footages. Unlike conventional long-video training approaches, the proposed method divides videos into 1-2 second clips and applies Large Language Model (LLM)-based auto-caption labeling to construct fine-grained datasets. Each short clip fully utilizes all frames to preserve temporal continuity, enabling precise recognition of rapid violent events. Experiments demonstrate that the proposed method achieves 95.25% accuracy on RWF-2000 and significantly improves performance on long videos (UCF-Crime: 83.25%), confirming its strong generalization and real-time applicability in intelligent surveillance systems. Read More  

Security News
windupate 3e8Oja

Microsoft Patch Tuesday, November 2025 EditionKrebs on SecurityBrianKrebs

Microsoft this week pushed security updates to fix more than 60 vulnerabilities in its Windows operating systems and supported software, including at least one zero-day bug that is already being exploited. Microsoft also fixed a glitch that prevented some Windows 10 users from taking advantage of an extra year of security updates, which is nice […]

GOVERN
NIST AI RMF map

What is NIST AI RMF Govern? A Practical Guide to NIST AI Risk Governance – 2025

Author: Derrick D. JacksonTitle: Founder & Senior Director of Cloud Security Architecture & RiskCredentials: CISSP, CRISC, CCSPLast updated November 16th, 2025 NIST AI RMF Function Overviews: View Articles What is NIST AI RMF Govern? The GOVERN function is the cornerstone of NIST’s AI Risk Management Framework. It establishes the policies, culture, accountability structures, and processes that […]