Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

News
AI News & Insights Featured Image

Privacy-Preserving Decentralized Federated Learning via Explainable Adaptive Differential Privacycs. AI updates on arXiv.org

Privacy-Preserving Decentralized Federated Learning via Explainable Adaptive Differential Privacycs.AI updates on arXiv.orgon September 16, 2025 at 4:00 am arXiv:2509.10691v1 Announce Type: cross
Abstract: Decentralized federated learning faces privacy risks because model updates can leak data through inference attacks and membership inference, a concern that grows over many client exchanges. Differential privacy offers principled protection by injecting calibrated noise so confidential information remains secure on resource-limited IoT devices. Yet without transparency, black-box training cannot track noise already injected by previous clients and rounds, which forces worst-case additions and harms accuracy. We propose PrivateDFL, an explainable framework that joins hyperdimensional computing with differential privacy and keeps an auditable account of cumulative noise so each client adds only the difference between the required noise and what has already been accumulated. We evaluate on MNIST, ISOLET, and UCI-HAR to span image, signal, and tabular modalities, and we benchmark against transformer-based and deep learning-based baselines trained centrally with Differentially Private Stochastic Gradient Descent (DP-SGD) and Renyi Differential Privacy (RDP). PrivateDFL delivers higher accuracy, lower latency, and lower energy across IID and non-IID partitions while preserving formal (epsilon, delta) guarantees and operating without a central server. For example, under non-IID partitions, PrivateDFL achieves 24.42% higher accuracy than the Vision Transformer on MNIST while using about 10x less training time, 76x lower inference latency, and 11x less energy, and on ISOLET it exceeds Transformer accuracy by more than 80% with roughly 10x less training time, 40x lower inference latency, and 36x less training energy. Future work will extend the explainable accounting to adversarial clients and adaptive topologies with heterogeneous privacy budgets.

 arXiv:2509.10691v1 Announce Type: cross
Abstract: Decentralized federated learning faces privacy risks because model updates can leak data through inference attacks and membership inference, a concern that grows over many client exchanges. Differential privacy offers principled protection by injecting calibrated noise so confidential information remains secure on resource-limited IoT devices. Yet without transparency, black-box training cannot track noise already injected by previous clients and rounds, which forces worst-case additions and harms accuracy. We propose PrivateDFL, an explainable framework that joins hyperdimensional computing with differential privacy and keeps an auditable account of cumulative noise so each client adds only the difference between the required noise and what has already been accumulated. We evaluate on MNIST, ISOLET, and UCI-HAR to span image, signal, and tabular modalities, and we benchmark against transformer-based and deep learning-based baselines trained centrally with Differentially Private Stochastic Gradient Descent (DP-SGD) and Renyi Differential Privacy (RDP). PrivateDFL delivers higher accuracy, lower latency, and lower energy across IID and non-IID partitions while preserving formal (epsilon, delta) guarantees and operating without a central server. For example, under non-IID partitions, PrivateDFL achieves 24.42% higher accuracy than the Vision Transformer on MNIST while using about 10x less training time, 76x lower inference latency, and 11x less energy, and on ISOLET it exceeds Transformer accuracy by more than 80% with roughly 10x less training time, 40x lower inference latency, and 36x less training energy. Future work will extend the explainable accounting to adversarial clients and adaptive topologies with heterogeneous privacy budgets. Read More 

News
AI News & Insights Featured Image

An Entropy-Guided Curriculum Learning Strategy for Data-Efficient Acoustic Scene Classification under Domain Shiftcs.AI updates on arXiv.org

An Entropy-Guided Curriculum Learning Strategy for Data-Efficient Acoustic Scene Classification under Domain Shiftcs.AI updates on arXiv.orgon September 16, 2025 at 4:00 am arXiv:2509.11168v1 Announce Type: cross
Abstract: Acoustic Scene Classification (ASC) faces challenges in generalizing across recording devices, particularly when labeled data is limited. The DCASE 2024 Challenge Task 1 highlights this issue by requiring models to learn from small labeled subsets recorded on a few devices. These models need to then generalize to recordings from previously unseen devices under strict complexity constraints. While techniques such as data augmentation and the use of pre-trained models are well-established for improving model generalization, optimizing the training strategy represents a complementary yet less-explored path that introduces no additional architectural complexity or inference overhead. Among various training strategies, curriculum learning offers a promising paradigm by structuring the learning process from easier to harder examples. In this work, we propose an entropy-guided curriculum learning strategy to address the domain shift problem in data-efficient ASC. Specifically, we quantify the uncertainty of device domain predictions for each training sample by computing the Shannon entropy of the device posterior probabilities estimated by an auxiliary domain classifier. Using entropy as a proxy for domain invariance, the curriculum begins with high-entropy samples and gradually incorporates low-entropy, domain-specific ones to facilitate the learning of generalizable representations. Experimental results on multiple DCASE 2024 ASC baselines demonstrate that our strategy effectively mitigates domain shift, particularly under limited labeled data conditions. Our strategy is architecture-agnostic and introduces no additional inference cost, making it easily integrable into existing ASC baselines and offering a practical solution to domain shift.

 arXiv:2509.11168v1 Announce Type: cross
Abstract: Acoustic Scene Classification (ASC) faces challenges in generalizing across recording devices, particularly when labeled data is limited. The DCASE 2024 Challenge Task 1 highlights this issue by requiring models to learn from small labeled subsets recorded on a few devices. These models need to then generalize to recordings from previously unseen devices under strict complexity constraints. While techniques such as data augmentation and the use of pre-trained models are well-established for improving model generalization, optimizing the training strategy represents a complementary yet less-explored path that introduces no additional architectural complexity or inference overhead. Among various training strategies, curriculum learning offers a promising paradigm by structuring the learning process from easier to harder examples. In this work, we propose an entropy-guided curriculum learning strategy to address the domain shift problem in data-efficient ASC. Specifically, we quantify the uncertainty of device domain predictions for each training sample by computing the Shannon entropy of the device posterior probabilities estimated by an auxiliary domain classifier. Using entropy as a proxy for domain invariance, the curriculum begins with high-entropy samples and gradually incorporates low-entropy, domain-specific ones to facilitate the learning of generalizable representations. Experimental results on multiple DCASE 2024 ASC baselines demonstrate that our strategy effectively mitigates domain shift, particularly under limited labeled data conditions. Our strategy is architecture-agnostic and introduces no additional inference cost, making it easily integrable into existing ASC baselines and offering a practical solution to domain shift. Read More 

News
AI News & Insights Featured Image

A Visual Guide to Tuning Gradient Boosted Trees Towards Data Science

A Visual Guide to Tuning Gradient Boosted TreesTowards Data Scienceon September 15, 2025 at 6:59 pm Introduction My previous posts looked at the bog-standard decision tree and the wonder of a random forest. Now, to complete the triplet, I’ll visually explore gradient boosted trees! There are a bunch of gradient boosted tree libraries, including XGBoost, CatBoost, and LightGBM. However, for this I’m going to use sklearn’s one. Why? Simply because, compared
The post A Visual Guide to Tuning Gradient Boosted Trees appeared first on Towards Data Science.

 Introduction My previous posts looked at the bog-standard decision tree and the wonder of a random forest. Now, to complete the triplet, I’ll visually explore gradient boosted trees! There are a bunch of gradient boosted tree libraries, including XGBoost, CatBoost, and LightGBM. However, for this I’m going to use sklearn’s one. Why? Simply because, compared
The post A Visual Guide to Tuning Gradient Boosted Trees appeared first on Towards Data Science. Read More 

News
AI News & Insights Featured Image

You Only Need 3 Things to Turn AI Experiments into AI Advantage Towards Data Science

You Only Need 3 Things to Turn AI Experiments into AI AdvantageTowards Data Scienceon September 15, 2025 at 6:14 pm Trapped in a purgatory of POCs enterprises need to focus and build just 3 pillars to realize value from AI
The post You Only Need 3 Things to Turn AI Experiments into AI Advantage appeared first on Towards Data Science.

 Trapped in a purgatory of POCs enterprises need to focus and build just 3 pillars to realize value from AI
The post You Only Need 3 Things to Turn AI Experiments into AI Advantage appeared first on Towards Data Science. Read More 

News
AI News & Insights Featured Image

HypoGeneAgent: A Hypothesis Language Agent for Gene-Set Cluster Resolution Selection Using Perturb-seq Datasetscs.AI updates on arXiv.org

HypoGeneAgent: A Hypothesis Language Agent for Gene-Set Cluster Resolution Selection Using Perturb-seq Datasetscs.AI updates on arXiv.orgon September 15, 2025 at 4:00 am arXiv:2509.09740v1 Announce Type: cross
Abstract: Large-scale single-cell and Perturb-seq investigations routinely involve clustering cells and subsequently annotating each cluster with Gene-Ontology (GO) terms to elucidate the underlying biological programs. However, both stages, resolution selection and functional annotation, are inherently subjective, relying on heuristics and expert curation. We present HYPOGENEAGENT, a large language model (LLM)-driven framework, transforming cluster annotation into a quantitatively optimizable task. Initially, an LLM functioning as a gene-set analyst analyzes the content of each gene program or perturbation module and generates a ranked list of GO-based hypotheses, accompanied by calibrated confidence scores. Subsequently, we embed every predicted description with a sentence-embedding model, compute pair-wise cosine similarities, and let the agent referee panel score (i) the internal consistency of the predictions, high average similarity within the same cluster, termed intra-cluster agreement (ii) their external distinctiveness, low similarity between clusters, termed inter-cluster separation. These two quantities are combined to produce an agent-derived resolution score, which is maximized when clusters exhibit simultaneous coherence and mutual exclusivity. When applied to a public K562 CRISPRi Perturb-seq dataset as a preliminary test, our Resolution Score selects clustering granularities that exhibit alignment with known pathway compared to classical metrics such silhouette score, modularity score for gene functional enrichment summary. These findings establish LLM agents as objective adjudicators of cluster resolution and functional annotation, thereby paving the way for fully automated, context-aware interpretation pipelines in single-cell multi-omics studies.

 arXiv:2509.09740v1 Announce Type: cross
Abstract: Large-scale single-cell and Perturb-seq investigations routinely involve clustering cells and subsequently annotating each cluster with Gene-Ontology (GO) terms to elucidate the underlying biological programs. However, both stages, resolution selection and functional annotation, are inherently subjective, relying on heuristics and expert curation. We present HYPOGENEAGENT, a large language model (LLM)-driven framework, transforming cluster annotation into a quantitatively optimizable task. Initially, an LLM functioning as a gene-set analyst analyzes the content of each gene program or perturbation module and generates a ranked list of GO-based hypotheses, accompanied by calibrated confidence scores. Subsequently, we embed every predicted description with a sentence-embedding model, compute pair-wise cosine similarities, and let the agent referee panel score (i) the internal consistency of the predictions, high average similarity within the same cluster, termed intra-cluster agreement (ii) their external distinctiveness, low similarity between clusters, termed inter-cluster separation. These two quantities are combined to produce an agent-derived resolution score, which is maximized when clusters exhibit simultaneous coherence and mutual exclusivity. When applied to a public K562 CRISPRi Perturb-seq dataset as a preliminary test, our Resolution Score selects clustering granularities that exhibit alignment with known pathway compared to classical metrics such silhouette score, modularity score for gene functional enrichment summary. These findings establish LLM agents as objective adjudicators of cluster resolution and functional annotation, thereby paving the way for fully automated, context-aware interpretation pipelines in single-cell multi-omics studies. Read More 

News
AI News & Insights Featured Image

ZORRO: Zero-Knowledge Robustness and Privacy for Split Learning (Full Version)cs.AI updates on arXiv.org

ZORRO: Zero-Knowledge Robustness and Privacy for Split Learning (Full Version)cs.AI updates on arXiv.orgon September 15, 2025 at 4:00 am arXiv:2509.09787v1 Announce Type: cross
Abstract: Split Learning (SL) is a distributed learning approach that enables resource-constrained clients to collaboratively train deep neural networks (DNNs) by offloading most layers to a central server while keeping in- and output layers on the client-side. This setup enables SL to leverage server computation capacities without sharing data, making it highly effective in resource-constrained environments dealing with sensitive data. However, the distributed nature enables malicious clients to manipulate the training process. By sending poisoned intermediate gradients, they can inject backdoors into the shared DNN. Existing defenses are limited by often focusing on server-side protection and introducing additional overhead for the server. A significant challenge for client-side defenses is enforcing malicious clients to correctly execute the defense algorithm.
We present ZORRO, a private, verifiable, and robust SL defense scheme. Through our novel design and application of interactive zero-knowledge proofs (ZKPs), clients prove their correct execution of a client-located defense algorithm, resulting in proofs of computational integrity attesting to the benign nature of locally trained DNN portions. Leveraging the frequency representation of model partitions enables ZORRO to conduct an in-depth inspection of the locally trained models in an untrusted environment, ensuring that each client forwards a benign checkpoint to its succeeding client. In our extensive evaluation, covering different model architectures as well as various attack strategies and data scenarios, we show ZORRO’s effectiveness, as it reduces the attack success rate to less than 6% while causing even for models storing numprint{1000000} parameters on the client-side an overhead of less than 10 seconds.

 arXiv:2509.09787v1 Announce Type: cross
Abstract: Split Learning (SL) is a distributed learning approach that enables resource-constrained clients to collaboratively train deep neural networks (DNNs) by offloading most layers to a central server while keeping in- and output layers on the client-side. This setup enables SL to leverage server computation capacities without sharing data, making it highly effective in resource-constrained environments dealing with sensitive data. However, the distributed nature enables malicious clients to manipulate the training process. By sending poisoned intermediate gradients, they can inject backdoors into the shared DNN. Existing defenses are limited by often focusing on server-side protection and introducing additional overhead for the server. A significant challenge for client-side defenses is enforcing malicious clients to correctly execute the defense algorithm.
We present ZORRO, a private, verifiable, and robust SL defense scheme. Through our novel design and application of interactive zero-knowledge proofs (ZKPs), clients prove their correct execution of a client-located defense algorithm, resulting in proofs of computational integrity attesting to the benign nature of locally trained DNN portions. Leveraging the frequency representation of model partitions enables ZORRO to conduct an in-depth inspection of the locally trained models in an untrusted environment, ensuring that each client forwards a benign checkpoint to its succeeding client. In our extensive evaluation, covering different model architectures as well as various attack strategies and data scenarios, we show ZORRO’s effectiveness, as it reduces the attack success rate to less than 6% while causing even for models storing numprint{1000000} parameters on the client-side an overhead of less than 10 seconds. Read More 

News
AI News & Insights Featured Image

How to Become a Machine Learning Engineer (Step-by-Step)Towards Data Science

How to Become a Machine Learning Engineer (Step-by-Step)Towards Data Scienceon September 15, 2025 at 12:00 pm Your one-stop guide to becoming a machine learning engineer
The post How to Become a Machine Learning Engineer (Step-by-Step) appeared first on Towards Data Science.

 Your one-stop guide to becoming a machine learning engineer
The post How to Become a Machine Learning Engineer (Step-by-Step) appeared first on Towards Data Science. Read More 

News
AI News & Insights Featured Image

MultimodalHugs: Enabling Sign Language Processing in Hugging Facecs.AI updates on arXiv.org

MultimodalHugs: Enabling Sign Language Processing in Hugging Facecs.AI updates on arXiv.orgon September 15, 2025 at 4:00 am arXiv:2509.09729v1 Announce Type: cross
Abstract: In recent years, sign language processing (SLP) has gained importance in the general field of Natural Language Processing. However, compared to research on spoken languages, SLP research is hindered by complex ad-hoc code, inadvertently leading to low reproducibility and unfair comparisons. Existing tools that are built for fast and reproducible experimentation, such as Hugging Face, are not flexible enough to seamlessly integrate sign language experiments. This view is confirmed by a survey we conducted among SLP researchers.
To address these challenges, we introduce MultimodalHugs, a framework built on top of Hugging Face that enables more diverse data modalities and tasks, while inheriting the well-known advantages of the Hugging Face ecosystem. Even though sign languages are our primary focus, MultimodalHugs adds a layer of abstraction that makes it more widely applicable to other use cases that do not fit one of the standard templates of Hugging Face. We provide quantitative experiments to illustrate how MultimodalHugs can accommodate diverse modalities such as pose estimation data for sign languages, or pixel data for text characters.

 arXiv:2509.09729v1 Announce Type: cross
Abstract: In recent years, sign language processing (SLP) has gained importance in the general field of Natural Language Processing. However, compared to research on spoken languages, SLP research is hindered by complex ad-hoc code, inadvertently leading to low reproducibility and unfair comparisons. Existing tools that are built for fast and reproducible experimentation, such as Hugging Face, are not flexible enough to seamlessly integrate sign language experiments. This view is confirmed by a survey we conducted among SLP researchers.
To address these challenges, we introduce MultimodalHugs, a framework built on top of Hugging Face that enables more diverse data modalities and tasks, while inheriting the well-known advantages of the Hugging Face ecosystem. Even though sign languages are our primary focus, MultimodalHugs adds a layer of abstraction that makes it more widely applicable to other use cases that do not fit one of the standard templates of Hugging Face. We provide quantitative experiments to illustrate how MultimodalHugs can accommodate diverse modalities such as pose estimation data for sign languages, or pixel data for text characters. Read More 

News
AI News & Insights Featured Image

Meta-Learning Reinforcement Learning for Crypto-Return Predictioncs.AI updates on arXiv.org

Meta-Learning Reinforcement Learning for Crypto-Return Predictioncs.AI updates on arXiv.orgon September 15, 2025 at 4:00 am arXiv:2509.09751v1 Announce Type: cross
Abstract: Predicting cryptocurrency returns is notoriously difficult: price movements are driven by a fast-shifting blend of on-chain activity, news flow, and social sentiment, while labeled training data are scarce and expensive. In this paper, we present Meta-RL-Crypto, a unified transformer-based architecture that unifies meta-learning and reinforcement learning (RL) to create a fully self-improving trading agent. Starting from a vanilla instruction-tuned LLM, the agent iteratively alternates between three roles-actor, judge, and meta-judge-in a closed-loop architecture. This learning process requires no additional human supervision. It can leverage multimodal market inputs and internal preference feedback. The agent in the system continuously refines both the trading policy and evaluation criteria. Experiments across diverse market regimes demonstrate that Meta-RL-Crypto shows good performance on the technical indicators of the real market and outperforming other LLM-based baselines.

 arXiv:2509.09751v1 Announce Type: cross
Abstract: Predicting cryptocurrency returns is notoriously difficult: price movements are driven by a fast-shifting blend of on-chain activity, news flow, and social sentiment, while labeled training data are scarce and expensive. In this paper, we present Meta-RL-Crypto, a unified transformer-based architecture that unifies meta-learning and reinforcement learning (RL) to create a fully self-improving trading agent. Starting from a vanilla instruction-tuned LLM, the agent iteratively alternates between three roles-actor, judge, and meta-judge-in a closed-loop architecture. This learning process requires no additional human supervision. It can leverage multimodal market inputs and internal preference feedback. The agent in the system continuously refines both the trading policy and evaluation criteria. Experiments across diverse market regimes demonstrate that Meta-RL-Crypto shows good performance on the technical indicators of the real market and outperforming other LLM-based baselines. Read More 

News
AI News & Insights Featured Image

The Rise of Semantic Entity Resolution Towards Data Science

The Rise of Semantic Entity ResolutionTowards Data Scienceon September 14, 2025 at 4:00 pm Semantic entity resolution uses language models to bring an increased level of automation to schema alignment, blocking (grouping records into smaller, efficient blocks for all-pairs comparison at quadratic, n² complexity), matching and even merging duplicate nodes and edges. In the past, entity resolution systems relied on statistical tricks such as string distance, static rules or complex ETL to schema align, block, match and merge records. Semantic entity resolution uses representation learning to gain a deeper understanding of records’ meaning in the domain of a business to automate the same process as part of a knowledge graph factory.
The post The Rise of Semantic Entity Resolution appeared first on Towards Data Science.

 Semantic entity resolution uses language models to bring an increased level of automation to schema alignment, blocking (grouping records into smaller, efficient blocks for all-pairs comparison at quadratic, n² complexity), matching and even merging duplicate nodes and edges. In the past, entity resolution systems relied on statistical tricks such as string distance, static rules or complex ETL to schema align, block, match and merge records. Semantic entity resolution uses representation learning to gain a deeper understanding of records’ meaning in the domain of a business to automate the same process as part of a knowledge graph factory.
The post The Rise of Semantic Entity Resolution appeared first on Towards Data Science. Read More