Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

News
AI News & Insights Featured Image

RL-Struct: A Lightweight Reinforcement Learning Framework for Reliable Structured Output in LLMs AI updates on arXiv.org

RL-Struct: A Lightweight Reinforcement Learning Framework for Reliable Structured Output in LLMscs.AI updates on arXiv.org arXiv:2512.00319v1 Announce Type: new
Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language generation and reasoning. However, their integration into automated software ecosystems is often hindered by the “Structure Gap” – the inherent tension between the probabilistic nature of token generation and the deterministic requirements of structured data formats (e.g., JSON, XML). Traditional Supervised Fine-Tuning (SFT) often fails to enforce strict syntactic constraints, leading to “hallucinated” keys or malformed structures, while constrained decoding methods impose significant inference latency. In this paper, we propose a lightweight, efficient Reinforcement Learning (RL) framework to bridge this gap. We introduce a novel Multi-dimensional Reward Function that decomposes the structured output task into a hierarchy of constraints: structural integrity, format correctness, content accuracy, and validity. Leveraging Gradient Regularized Policy Optimization (GRPO), we enable the model to internalize these constraints without the need for a separate critic network, reducing peak VRAM usage by 40% compared to PPO. We validate our approach on multiple tasks, including complex recipe generation and structured math reasoning (GSM8K-JSON). Experimental results demonstrate that our method achieves 89.7% structural accuracy and 92.1% JSON validity, significantly outperforming both zero-shot baselines (e.g., GPT-3.5) and SFT on larger models like LLaMA-3-8B. Furthermore, we provide a detailed analysis of training dynamics, revealing a distinct self-paced curriculum where the model sequentially acquires syntactic proficiency before semantic accuracy. Our model is publicly available at https://huggingface.co/Freakz3z/Qwen-JSON.

 arXiv:2512.00319v1 Announce Type: new
Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language generation and reasoning. However, their integration into automated software ecosystems is often hindered by the “Structure Gap” – the inherent tension between the probabilistic nature of token generation and the deterministic requirements of structured data formats (e.g., JSON, XML). Traditional Supervised Fine-Tuning (SFT) often fails to enforce strict syntactic constraints, leading to “hallucinated” keys or malformed structures, while constrained decoding methods impose significant inference latency. In this paper, we propose a lightweight, efficient Reinforcement Learning (RL) framework to bridge this gap. We introduce a novel Multi-dimensional Reward Function that decomposes the structured output task into a hierarchy of constraints: structural integrity, format correctness, content accuracy, and validity. Leveraging Gradient Regularized Policy Optimization (GRPO), we enable the model to internalize these constraints without the need for a separate critic network, reducing peak VRAM usage by 40% compared to PPO. We validate our approach on multiple tasks, including complex recipe generation and structured math reasoning (GSM8K-JSON). Experimental results demonstrate that our method achieves 89.7% structural accuracy and 92.1% JSON validity, significantly outperforming both zero-shot baselines (e.g., GPT-3.5) and SFT on larger models like LLaMA-3-8B. Furthermore, we provide a detailed analysis of training dynamics, revealing a distinct self-paced curriculum where the model sequentially acquires syntactic proficiency before semantic accuracy. Our model is publicly available at https://huggingface.co/Freakz3z/Qwen-JSON. Read More  

News
AI News & Insights Featured Image

Trification: A Comprehensive Tree-based Strategy Planner and Structural Verification for Fact-Checking AI updates on arXiv.org

Trification: A Comprehensive Tree-based Strategy Planner and Structural Verification for Fact-Checkingcs.AI updates on arXiv.org arXiv:2512.00267v1 Announce Type: new
Abstract: Technological advancement allows information to be shared in just a single click, which has enabled the rapid spread of false information. This makes automated fact-checking system necessary to ensure the safety and integrity of our online media ecosystem. Previous methods have demonstrated the effectiveness of decomposing the claim into simpler sub-tasks and utilizing LLM-based multi agent system to execute them. However, those models faces two limitations: they often fail to verify every component in the claim and lack of structured framework to logically connect the results of sub-tasks for a final prediction. In this work, we propose a novel automated fact-checking framework called Trification. Our framework begins by generating a comprehensive set of verification actions to ensure complete coverage of the claim. It then structured these actions into a dependency graph to model the logical interaction between actions. Furthermore, the graph can be dynamically modified, allowing the system to adapt its verification strategy. Experimental results on two challenging benchmarks demonstrate that our framework significantly enhances fact-checking accuracy, thereby advancing current state-of-the-art in automated fact-checking system.

 arXiv:2512.00267v1 Announce Type: new
Abstract: Technological advancement allows information to be shared in just a single click, which has enabled the rapid spread of false information. This makes automated fact-checking system necessary to ensure the safety and integrity of our online media ecosystem. Previous methods have demonstrated the effectiveness of decomposing the claim into simpler sub-tasks and utilizing LLM-based multi agent system to execute them. However, those models faces two limitations: they often fail to verify every component in the claim and lack of structured framework to logically connect the results of sub-tasks for a final prediction. In this work, we propose a novel automated fact-checking framework called Trification. Our framework begins by generating a comprehensive set of verification actions to ensure complete coverage of the claim. It then structured these actions into a dependency graph to model the logical interaction between actions. Furthermore, the graph can be dynamically modified, allowing the system to adapt its verification strategy. Experimental results on two challenging benchmarks demonstrate that our framework significantly enhances fact-checking accuracy, thereby advancing current state-of-the-art in automated fact-checking system. Read More  

Security News
SecAlerts VMbp6E

SecAlerts Cuts Through the Noise with a Smarter, Faster Way to Track Vulnerabilities The Hacker Newsinfo@thehackernews.com (The Hacker News)

Vulnerability management is a core component of every cybersecurity strategy. However, businesses often use thousands of software without realising it (when was the last time you checked?), and keeping track of all the vulnerability alerts, notifications, and updates can be a burden on resources and often leads to missed vulnerabilities.  Taking into account that nearly […]

News
How OpenAI and Thrive are testing a new enterprise AI model AI News

How OpenAI and Thrive are testing a new enterprise AI model AI News

How OpenAI and Thrive are testing a new enterprise AI modelAI News Thrive Holdings’ push to modernise accounting and IT services is entering a new stage, as OpenAI prepares to take an ownership stake in the company and place its own specialists inside Thrive’s businesses. In doing so, OpenAI is testing an AI-driven model that pairs capital, sector expertise, and embedded technical teams. Thrive started its holding
The post How OpenAI and Thrive are testing a new enterprise AI model appeared first on AI News.

 Thrive Holdings’ push to modernise accounting and IT services is entering a new stage, as OpenAI prepares to take an ownership stake in the company and place its own specialists inside Thrive’s businesses. In doing so, OpenAI is testing an AI-driven model that pairs capital, sector expertise, and embedded technical teams. Thrive started its holding
The post How OpenAI and Thrive are testing a new enterprise AI model appeared first on AI News. Read More  

News
AI News & Insights Featured Image

A TinyML Reinforcement Learning Approach for Energy-Efficient Light Control in Low-Cost Greenhouse Systems AI updates on arXiv.org

A TinyML Reinforcement Learning Approach for Energy-Efficient Light Control in Low-Cost Greenhouse Systemscs.AI updates on arXiv.org arXiv:2512.01167v1 Announce Type: cross
Abstract: This study presents a reinforcement learning (RL)-based control strategy for adaptive lighting regulation in controlled environments using a low-power microcontroller. A model-free Q-learning algorithm was implemented to dynamically adjust the brightness of a Light-Emitting Diode (LED) based on real-time feedback from a light-dependent resistor (LDR) sensor. The system was trained to stabilize at 13 distinct light intensity levels (L1 to L13), with each target corresponding to a specific range within the 64-state space derived from LDR readings. A total of 130 trials were conducted, covering all target levels with 10 episodes each. Performance was evaluated in terms of convergence speed, steps taken, and time required to reach target states. Box plots and histograms were generated to analyze the distribution of training time and learning efficiency across targets. Experimental validation demonstrated that the agent could effectively learn to stabilize at varying light levels with minimal overshooting and smooth convergence, even in the presence of environmental perturbations. This work highlights the feasibility of lightweight, on-device RL for energy-efficient lighting control and sets the groundwork for multi-modal environmental control applications in resource-constrained agricultural systems.

 arXiv:2512.01167v1 Announce Type: cross
Abstract: This study presents a reinforcement learning (RL)-based control strategy for adaptive lighting regulation in controlled environments using a low-power microcontroller. A model-free Q-learning algorithm was implemented to dynamically adjust the brightness of a Light-Emitting Diode (LED) based on real-time feedback from a light-dependent resistor (LDR) sensor. The system was trained to stabilize at 13 distinct light intensity levels (L1 to L13), with each target corresponding to a specific range within the 64-state space derived from LDR readings. A total of 130 trials were conducted, covering all target levels with 10 episodes each. Performance was evaluated in terms of convergence speed, steps taken, and time required to reach target states. Box plots and histograms were generated to analyze the distribution of training time and learning efficiency across targets. Experimental validation demonstrated that the agent could effectively learn to stabilize at varying light levels with minimal overshooting and smooth convergence, even in the presence of environmental perturbations. This work highlights the feasibility of lightweight, on-device RL for energy-efficient lighting control and sets the groundwork for multi-modal environmental control applications in resource-constrained agricultural systems. Read More  

News
AI News & Insights Featured Image

On the Regulatory Potential of User Interfaces for AI Agent Governance AI updates on arXiv.org

On the Regulatory Potential of User Interfaces for AI Agent Governancecs.AI updates on arXiv.org arXiv:2512.00742v1 Announce Type: cross
Abstract: AI agents that take actions in their environment autonomously over extended time horizons require robust governance interventions to curb their potentially consequential risks. Prior proposals for governing AI agents primarily target system-level safeguards (e.g., prompt injection monitors) or agent infrastructure (e.g., agent IDs). In this work, we explore a complementary approach: regulating user interfaces of AI agents as a way of enforcing transparency and behavioral requirements that then demand changes at the system and/or infrastructure levels. Specifically, we analyze 22 existing agentic systems to identify UI elements that play key roles in human-agent interaction and communication. We then synthesize those elements into six high-level interaction design patterns that hold regulatory potential (e.g., requiring agent memory to be editable). We conclude with policy recommendations based on our analysis. Our work exposes a new surface for regulatory action that supplements previous proposals for practical AI agent governance.

 arXiv:2512.00742v1 Announce Type: cross
Abstract: AI agents that take actions in their environment autonomously over extended time horizons require robust governance interventions to curb their potentially consequential risks. Prior proposals for governing AI agents primarily target system-level safeguards (e.g., prompt injection monitors) or agent infrastructure (e.g., agent IDs). In this work, we explore a complementary approach: regulating user interfaces of AI agents as a way of enforcing transparency and behavioral requirements that then demand changes at the system and/or infrastructure levels. Specifically, we analyze 22 existing agentic systems to identify UI elements that play key roles in human-agent interaction and communication. We then synthesize those elements into six high-level interaction design patterns that hold regulatory potential (e.g., requiring agent memory to be editable). We conclude with policy recommendations based on our analysis. Our work exposes a new surface for regulatory action that supplements previous proposals for practical AI agent governance. Read More  

News
AI News & Insights Featured Image

CogEvo-Edu: Cognitive Evolution Educational Multi-Agent Collaborative System AI updates on arXiv.org

CogEvo-Edu: Cognitive Evolution Educational Multi-Agent Collaborative Systemcs.AI updates on arXiv.org arXiv:2512.00331v1 Announce Type: new
Abstract: Large language models (LLMs) are increasingly deployed as conversational tutors in STEM education, yet most systems still rely on a single LLM with a static retrieval-augmented generation (RAG) pipeline over course materials. This design struggles in complex domains such as digital signal processing (DSP), where tutors must maintain coherent long-term student models, manage heterogeneous knowledge bases, and adapt teaching strategies over extended interactions. We argue that retrieval, memory, and control should be treated as a coupled cognitive evolution process. We instantiate this view in CogEvo-Edu, a hierarchical educational multi-agent system comprising a Cognitive Perception Layer (CPL), a Knowledge Evolution Layer (KEL), and a Meta-Control Layer (MCL). CPL maintains dual memories and performs confidence-weighted consolidation to build structured, self-correcting student profiles under limited context. KEL assigns each knowledge chunk a spatiotemporal value that drives activation, semantic compression, and forgetting. MCL formulates tutoring as hierarchical sequential decision making, orchestrating specialized agents and jointly adapting CPL/KEL hyperparameters via a dual inner–outer loop. To evaluate CogEvo-Edu, we construct DSP-EduBench, a vertical benchmark for DSP tutoring with heterogeneous resources, simulated student profiles, and long-horizon interaction scripts. Using a three-model LLM-as-a-Judge ensemble, CogEvo-Edu raises the overall score from 5.32 to 9.23 and improves all six indicators over static RAG, simple memory, and a single-agent variant, demonstrating the value of jointly evolving student profiles, knowledge bases, and teaching policies.

 arXiv:2512.00331v1 Announce Type: new
Abstract: Large language models (LLMs) are increasingly deployed as conversational tutors in STEM education, yet most systems still rely on a single LLM with a static retrieval-augmented generation (RAG) pipeline over course materials. This design struggles in complex domains such as digital signal processing (DSP), where tutors must maintain coherent long-term student models, manage heterogeneous knowledge bases, and adapt teaching strategies over extended interactions. We argue that retrieval, memory, and control should be treated as a coupled cognitive evolution process. We instantiate this view in CogEvo-Edu, a hierarchical educational multi-agent system comprising a Cognitive Perception Layer (CPL), a Knowledge Evolution Layer (KEL), and a Meta-Control Layer (MCL). CPL maintains dual memories and performs confidence-weighted consolidation to build structured, self-correcting student profiles under limited context. KEL assigns each knowledge chunk a spatiotemporal value that drives activation, semantic compression, and forgetting. MCL formulates tutoring as hierarchical sequential decision making, orchestrating specialized agents and jointly adapting CPL/KEL hyperparameters via a dual inner–outer loop. To evaluate CogEvo-Edu, we construct DSP-EduBench, a vertical benchmark for DSP tutoring with heterogeneous resources, simulated student profiles, and long-horizon interaction scripts. Using a three-model LLM-as-a-Judge ensemble, CogEvo-Edu raises the overall score from 5.32 to 9.23 and improves all six indicators over static RAG, simple memory, and a single-agent variant, demonstrating the value of jointly evolving student profiles, knowledge bases, and teaching policies. Read More  

News
AI News & Insights Featured Image

Automatic Pith Detection in Tree Cross-Section Images Using Deep Learning AI updates on arXiv.org

Automatic Pith Detection in Tree Cross-Section Images Using Deep Learningcs.AI updates on arXiv.org arXiv:2512.00625v1 Announce Type: cross
Abstract: Pith detection in tree cross-sections is essential for forestry and wood quality analysis but remains a manual, error-prone task. This study evaluates deep learning models — YOLOv9, U-Net, Swin Transformer, DeepLabV3, and Mask R-CNN — to automate the process efficiently. A dataset of 582 labeled images was dynamically augmented to improve generalization. Swin Transformer achieved the highest accuracy (0.94), excelling in fine segmentation. YOLOv9 performed well for bounding box detection but struggled with boundary precision. U-Net was effective for structured patterns, while DeepLabV3 captured multi-scale features with slight boundary imprecision. Mask R-CNN initially underperformed due to overlapping detections, but applying Non-Maximum Suppression (NMS) improved its IoU from 0.45 to 0.80. Generalizability was next tested using an oak dataset of 11 images from Oregon State University’s Tree Ring Lab. Additionally, for exploratory analysis purposes, an additional dataset of 64 labeled tree cross-sections was used to train the worst-performing model to see if this would improve its performance generalizing to the unseen oak dataset. Key challenges included tensor mismatches and boundary inconsistencies, addressed through hyperparameter tuning and augmentation. Our results highlight deep learning’s potential for tree cross-section pith detection, with model choice depending on dataset characteristics and application needs.

 arXiv:2512.00625v1 Announce Type: cross
Abstract: Pith detection in tree cross-sections is essential for forestry and wood quality analysis but remains a manual, error-prone task. This study evaluates deep learning models — YOLOv9, U-Net, Swin Transformer, DeepLabV3, and Mask R-CNN — to automate the process efficiently. A dataset of 582 labeled images was dynamically augmented to improve generalization. Swin Transformer achieved the highest accuracy (0.94), excelling in fine segmentation. YOLOv9 performed well for bounding box detection but struggled with boundary precision. U-Net was effective for structured patterns, while DeepLabV3 captured multi-scale features with slight boundary imprecision. Mask R-CNN initially underperformed due to overlapping detections, but applying Non-Maximum Suppression (NMS) improved its IoU from 0.45 to 0.80. Generalizability was next tested using an oak dataset of 11 images from Oregon State University’s Tree Ring Lab. Additionally, for exploratory analysis purposes, an additional dataset of 64 labeled tree cross-sections was used to train the worst-performing model to see if this would improve its performance generalizing to the unseen oak dataset. Key challenges included tensor mismatches and boundary inconsistencies, addressed through hyperparameter tuning and augmentation. Our results highlight deep learning’s potential for tree cross-section pith detection, with model choice depending on dataset characteristics and application needs. Read More  

Security News
android update ZavSCw

Google Patches 107 Android Flaws, Including Two Framework Bugs Exploited in the Wild The Hacker Newsinfo@thehackernews.com (The Hacker News)

Google on Monday released monthly security updates for the Android operating system, including two vulnerabilities that it said have been exploited in the wild. The patch addresses a total of 107 security flaws spanning different components, including Framework, System, Kernel, as well as those from Arm, Imagination Technologies, MediaTek, Qualcomm, and Unison. The two high-severity […]