DialogGuard: Multi-Agent Psychosocial Safety Evaluation of Sensitive LLM Responsescs.AI updates on arXiv.org arXiv:2512.02282v1 Announce Type: new
Abstract: Large language models (LLMs) now mediate many web-based mental- health, crisis, and other emotionally sensitive services, yet their psychosocial safety in these settings remains poorly understood and weakly evaluated. We present DialogGuard, a multi-agent frame- work for assessing psychosocial risks in LLM-generated responses along five high-severity dimensions: privacy violations, discrimi- natory behaviour, mental manipulation, psychological harm, and insulting behaviour. DialogGuard can be applied to diverse gen- erative models through four LLM-as-a-judge pipelines, including single-agent scoring, dual-agent correction, multi-agent debate, and stochastic majority voting, grounded in a shared three-level rubric usable by both human annotators and LLM judges. Using PKU-SafeRLHF with human safety annotations, we show that multi- agent mechanisms detect psychosocial risks more accurately than non-LLM baselines and single-agent judging; dual-agent correction and majority voting provide the best trade-off between accuracy, alignment with human ratings, and robustness, while debate attains higher recall but over-flags borderline cases. We release Dialog- Guard as open-source software with a web interface that provides per-dimension risk scores and explainable natural-language ratio- nales. A formative study with 12 practitioners illustrates how it supports prompt design, auditing, and supervision of web-facing applications for vulnerable users.
arXiv:2512.02282v1 Announce Type: new
Abstract: Large language models (LLMs) now mediate many web-based mental- health, crisis, and other emotionally sensitive services, yet their psychosocial safety in these settings remains poorly understood and weakly evaluated. We present DialogGuard, a multi-agent frame- work for assessing psychosocial risks in LLM-generated responses along five high-severity dimensions: privacy violations, discrimi- natory behaviour, mental manipulation, psychological harm, and insulting behaviour. DialogGuard can be applied to diverse gen- erative models through four LLM-as-a-judge pipelines, including single-agent scoring, dual-agent correction, multi-agent debate, and stochastic majority voting, grounded in a shared three-level rubric usable by both human annotators and LLM judges. Using PKU-SafeRLHF with human safety annotations, we show that multi- agent mechanisms detect psychosocial risks more accurately than non-LLM baselines and single-agent judging; dual-agent correction and majority voting provide the best trade-off between accuracy, alignment with human ratings, and robustness, while debate attains higher recall but over-flags borderline cases. We release Dialog- Guard as open-source software with a web interface that provides per-dimension risk scores and explainable natural-language ratio- nales. A formative study with 12 practitioners illustrates how it supports prompt design, auditing, and supervision of web-facing applications for vulnerable users. Read More
Most people know the story of Paul Bunyan. A giant lumberjack, a trusted axe, and a challenge from a machine that promised to outpace him. Paul doubled down on his old way of working, swung harder, and still lost by a quarter inch. His mistake was not losing the contest. His mistake was assuming that […]
Three critical security flaws have been disclosed in an open-source utility called Picklescan that could allow malicious actors to execute arbitrary code by loading untrusted PyTorch models, effectively bypassing the tool’s protections. Picklescan, developed and maintained by Matthieu Maitre (@mmaitre314), is a security scanner that’s designed to parse Python pickle files and detect suspicious Read More
Steering Vision-Language-Action Models as Anti-Exploration: A Test-Time Scaling Approachcs.AI updates on arXiv.org arXiv:2512.02834v1 Announce Type: cross
Abstract: Vision-Language-Action (VLA) models, trained via flow-matching or diffusion objectives, excel at learning complex behaviors from large-scale, multi-modal datasets (e.g., human teleoperation, scripted policies). However, since VLAs incorporate diverse data modes in the pre-training stage, and the finetuning dataset often contains demonstration data collected in a kinematically suboptimal or undesirable way, it exists redundant action modes that are irrelevant to the success action modes of the downstream task. Specifically, we observe a critical inference-time fragility among various sampled noises after supervised finetuning of pre-trained VLAs. In this paper, we attribute this instability to the distribution shift between the VLA policy and the policy induced by stable success modes of the downstream task dataset. Thus, we propose textbf{TACO}, a test-time-scaling (TTS) framework that applies a lightweight pseudo-count estimator as a high-fidelity verifier of action chunks. The VLA models integrated with TACO can execute the actions with maximum pseudo-count from all sampled action chunks, thereby preventing distribution shifts while preserving the generalization ability of VLAs since the constraint is applied only during inference. Our method resembles the classical anti-exploration principle in offline reinforcement learning (RL), and being gradient-free, it incurs significant computational benefits compared to RL update, especially for flow or diffusion-based VLAs which are difficult to perform RL update due to denoising process. Extensive experiments across four simulation benchmarks (RoboTwin2.0, Robotwin, LIBERO, SimplerEnv) and a dual-arm platform demonstrate that our method significantly improves the inference stability and success rates in downstream-task adaptations.
arXiv:2512.02834v1 Announce Type: cross
Abstract: Vision-Language-Action (VLA) models, trained via flow-matching or diffusion objectives, excel at learning complex behaviors from large-scale, multi-modal datasets (e.g., human teleoperation, scripted policies). However, since VLAs incorporate diverse data modes in the pre-training stage, and the finetuning dataset often contains demonstration data collected in a kinematically suboptimal or undesirable way, it exists redundant action modes that are irrelevant to the success action modes of the downstream task. Specifically, we observe a critical inference-time fragility among various sampled noises after supervised finetuning of pre-trained VLAs. In this paper, we attribute this instability to the distribution shift between the VLA policy and the policy induced by stable success modes of the downstream task dataset. Thus, we propose textbf{TACO}, a test-time-scaling (TTS) framework that applies a lightweight pseudo-count estimator as a high-fidelity verifier of action chunks. The VLA models integrated with TACO can execute the actions with maximum pseudo-count from all sampled action chunks, thereby preventing distribution shifts while preserving the generalization ability of VLAs since the constraint is applied only during inference. Our method resembles the classical anti-exploration principle in offline reinforcement learning (RL), and being gradient-free, it incurs significant computational benefits compared to RL update, especially for flow or diffusion-based VLAs which are difficult to perform RL update due to denoising process. Extensive experiments across four simulation benchmarks (RoboTwin2.0, Robotwin, LIBERO, SimplerEnv) and a dual-arm platform demonstrate that our method significantly improves the inference stability and success rates in downstream-task adaptations. Read More
AskNearby: An LLM-Based Application for Neighborhood Information Retrieval and Personalized Cognitive-Map Recommendationscs.AI updates on arXiv.org arXiv:2512.02502v1 Announce Type: cross
Abstract: The “15-minute city” envisions neighborhoods where residents can meet daily needs via a short walk or bike ride. Realizing this vision requires not only physical proximity but also efficient and reliable access to information about nearby places, services, and events. Existing location-based systems, however, focus mainly on city-level tasks and neglect the spatial, temporal, and cognitive factors that shape localized decision-making. We conceptualize this gap as the Local Life Information Accessibility (LLIA) problem and introduce AskNearby, an AI-driven community application that unifies retrieval and recommendation within the 15-minute life circle. AskNearby integrates (i) a three-layer Retrieval-Augmented Generation (RAG) pipeline that synergizes graph-based, semantic-vector, and geographic retrieval with (ii) a cognitive-map model that encodes each user’s neighborhood familiarity and preferences. Experiments on real-world community datasets demonstrate that AskNearby significantly outperforms LLM-based and map-based baselines in retrieval accuracy and recommendation quality, achieving robust performance in spatiotemporal grounding and cognitive-aware ranking. Real-world deployments further validate its effectiveness. By addressing the LLIA challenge, AskNearby empowers residents to more effectively discover local resources, plan daily activities, and engage in community life.
arXiv:2512.02502v1 Announce Type: cross
Abstract: The “15-minute city” envisions neighborhoods where residents can meet daily needs via a short walk or bike ride. Realizing this vision requires not only physical proximity but also efficient and reliable access to information about nearby places, services, and events. Existing location-based systems, however, focus mainly on city-level tasks and neglect the spatial, temporal, and cognitive factors that shape localized decision-making. We conceptualize this gap as the Local Life Information Accessibility (LLIA) problem and introduce AskNearby, an AI-driven community application that unifies retrieval and recommendation within the 15-minute life circle. AskNearby integrates (i) a three-layer Retrieval-Augmented Generation (RAG) pipeline that synergizes graph-based, semantic-vector, and geographic retrieval with (ii) a cognitive-map model that encodes each user’s neighborhood familiarity and preferences. Experiments on real-world community datasets demonstrate that AskNearby significantly outperforms LLM-based and map-based baselines in retrieval accuracy and recommendation quality, achieving robust performance in spatiotemporal grounding and cognitive-aware ranking. Real-world deployments further validate its effectiveness. By addressing the LLIA challenge, AskNearby empowers residents to more effectively discover local resources, plan daily activities, and engage in community life. Read More
WISE: Weighted Iterative Society-of-Experts for Robust Multimodal Multi-Agent Debatecs.AI updates on arXiv.org arXiv:2512.02405v1 Announce Type: cross
Abstract: Recent large language models (LLMs) are trained on diverse corpora and tasks, leading them to develop complementary strengths. Multi-agent debate (MAD) has emerged as a popular way to leverage these strengths for robust reasoning, though it has mostly been applied to language-only tasks, leaving its efficacy on multimodal problems underexplored. In this paper, we study MAD for solving vision-and-language reasoning problems. Our setup enables generalizing the debate protocol with heterogeneous experts that possess single- and multi-modal capabilities. To this end, we present Weighted Iterative Society-of-Experts (WISE), a generalized and modular MAD framework that partitions the agents into Solvers, that generate solutions, and Reflectors, that verify correctness, assign weights, and provide natural language feedback. To aggregate the agents’ solutions across debate rounds, while accounting for variance in their responses and the feedback weights, we present a modified Dawid-Skene algorithm for post-processing that integrates our two-stage debate model. We evaluate WISE on SMART-840, VisualPuzzles, EvoChart-QA, and a new SMART-840++ dataset with programmatically generated problem instances of controlled difficulty. Our results show that WISE consistently improves accuracy by 2-7% over the state-of-the-art MAD setups and aggregation methods across diverse multimodal tasks and LLM configurations.
arXiv:2512.02405v1 Announce Type: cross
Abstract: Recent large language models (LLMs) are trained on diverse corpora and tasks, leading them to develop complementary strengths. Multi-agent debate (MAD) has emerged as a popular way to leverage these strengths for robust reasoning, though it has mostly been applied to language-only tasks, leaving its efficacy on multimodal problems underexplored. In this paper, we study MAD for solving vision-and-language reasoning problems. Our setup enables generalizing the debate protocol with heterogeneous experts that possess single- and multi-modal capabilities. To this end, we present Weighted Iterative Society-of-Experts (WISE), a generalized and modular MAD framework that partitions the agents into Solvers, that generate solutions, and Reflectors, that verify correctness, assign weights, and provide natural language feedback. To aggregate the agents’ solutions across debate rounds, while accounting for variance in their responses and the feedback weights, we present a modified Dawid-Skene algorithm for post-processing that integrates our two-stage debate model. We evaluate WISE on SMART-840, VisualPuzzles, EvoChart-QA, and a new SMART-840++ dataset with programmatically generated problem instances of controlled difficulty. Our results show that WISE consistently improves accuracy by 2-7% over the state-of-the-art MAD setups and aggregation methods across diverse multimodal tasks and LLM configurations. Read More
Boosting Medical Vision-Language Pretraining via Momentum Self-Distillation under Limited Computing Resourcescs.AI updates on arXiv.org arXiv:2512.02438v1 Announce Type: cross
Abstract: In medical healthcare, obtaining detailed annotations is challenging, highlighting the need for robust Vision-Language Models (VLMs). Pretrained VLMs enable fine-tuning on small datasets or zero-shot inference, achieving performance comparable to task-specific models. Contrastive learning (CL) is a key paradigm for training VLMs but inherently requires large batch sizes for effective learning, making it computationally demanding and often limited to well-resourced institutions. Moreover, with limited data in healthcare, it is important to prioritize knowledge extraction from both data and models during training to improve performance. Therefore, we focus on leveraging the momentum method combined with distillation to simultaneously address computational efficiency and knowledge exploitation. Our contributions can be summarized as follows: (1) leveraging momentum self-distillation to enhance multimodal learning, and (2) integrating momentum mechanisms with gradient accumulation to enlarge the effective batch size without increasing resource consumption. Our method attains competitive performance with state-of-the-art (SOTA) approaches in zero-shot classification, while providing a substantial boost in the few-shot adaption, achieving over 90% AUC-ROC and improving retrieval tasks by 2-3%. Importantly, our method achieves high training efficiency with a single GPU while maintaining reasonable training time. Our approach aims to advance efficient multimodal learning by reducing resource requirements while improving performance over SOTA methods. The implementation of our method is available at https://github.com/phphuc612/MSD .
arXiv:2512.02438v1 Announce Type: cross
Abstract: In medical healthcare, obtaining detailed annotations is challenging, highlighting the need for robust Vision-Language Models (VLMs). Pretrained VLMs enable fine-tuning on small datasets or zero-shot inference, achieving performance comparable to task-specific models. Contrastive learning (CL) is a key paradigm for training VLMs but inherently requires large batch sizes for effective learning, making it computationally demanding and often limited to well-resourced institutions. Moreover, with limited data in healthcare, it is important to prioritize knowledge extraction from both data and models during training to improve performance. Therefore, we focus on leveraging the momentum method combined with distillation to simultaneously address computational efficiency and knowledge exploitation. Our contributions can be summarized as follows: (1) leveraging momentum self-distillation to enhance multimodal learning, and (2) integrating momentum mechanisms with gradient accumulation to enlarge the effective batch size without increasing resource consumption. Our method attains competitive performance with state-of-the-art (SOTA) approaches in zero-shot classification, while providing a substantial boost in the few-shot adaption, achieving over 90% AUC-ROC and improving retrieval tasks by 2-3%. Importantly, our method achieves high training efficiency with a single GPU while maintaining reasonable training time. Our approach aims to advance efficient multimodal learning by reducing resource requirements while improving performance over SOTA methods. The implementation of our method is available at https://github.com/phphuc612/MSD . Read More
Video Diffusion Models Excel at Tracking Similar-Looking Objects Without Supervisioncs.AI updates on arXiv.org arXiv:2512.02339v1 Announce Type: cross
Abstract: Distinguishing visually similar objects by their motion remains a critical challenge in computer vision. Although supervised trackers show promise, contemporary self-supervised trackers struggle when visual cues become ambiguous, limiting their scalability and generalization without extensive labeled data. We find that pre-trained video diffusion models inherently learn motion representations suitable for tracking without task-specific training. This ability arises because their denoising process isolates motion in early, high-noise stages, distinct from later appearance refinement. Capitalizing on this discovery, our self-supervised tracker significantly improves performance in distinguishing visually similar objects, an underexplored failure point for existing methods. Our method achieves up to a 6-point improvement over recent self-supervised approaches on established benchmarks and our newly introduced tests focused on tracking visually similar items. Visualizations confirm that these diffusion-derived motion representations enable robust tracking of even identical objects across challenging viewpoint changes and deformations.
arXiv:2512.02339v1 Announce Type: cross
Abstract: Distinguishing visually similar objects by their motion remains a critical challenge in computer vision. Although supervised trackers show promise, contemporary self-supervised trackers struggle when visual cues become ambiguous, limiting their scalability and generalization without extensive labeled data. We find that pre-trained video diffusion models inherently learn motion representations suitable for tracking without task-specific training. This ability arises because their denoising process isolates motion in early, high-noise stages, distinct from later appearance refinement. Capitalizing on this discovery, our self-supervised tracker significantly improves performance in distinguishing visually similar objects, an underexplored failure point for existing methods. Our method achieves up to a 6-point improvement over recent self-supervised approaches on established benchmarks and our newly introduced tests focused on tracking visually similar items. Visualizations confirm that these diffusion-derived motion representations enable robust tracking of even identical objects across challenging viewpoint changes and deformations. Read More
Model Recovery at the Edge under Resource Constraints for Physical AIcs.AI updates on arXiv.org arXiv:2512.02283v1 Announce Type: new
Abstract: Model Recovery (MR) enables safe, explainable decision making in mission-critical autonomous systems (MCAS) by learning governing dynamical equations, but its deployment on edge devices is hindered by the iterative nature of neural ordinary differential equations (NODEs), which are inefficient on FPGAs. Memory and energy consumption are the main concerns when applying MR on edge devices for real-time operation. We propose MERINDA, a novel FPGA-accelerated MR framework that replaces iterative solvers with a parallelizable neural architecture equivalent to NODEs. MERINDA achieves nearly 11x lower DRAM usage and 2.2x faster runtime compared to mobile GPUs. Experiments reveal an inverse relationship between memory and energy at fixed accuracy, highlighting MERINDA’s suitability for resource-constrained, real-time MCAS.
arXiv:2512.02283v1 Announce Type: new
Abstract: Model Recovery (MR) enables safe, explainable decision making in mission-critical autonomous systems (MCAS) by learning governing dynamical equations, but its deployment on edge devices is hindered by the iterative nature of neural ordinary differential equations (NODEs), which are inefficient on FPGAs. Memory and energy consumption are the main concerns when applying MR on edge devices for real-time operation. We propose MERINDA, a novel FPGA-accelerated MR framework that replaces iterative solvers with a parallelizable neural architecture equivalent to NODEs. MERINDA achieves nearly 11x lower DRAM usage and 2.2x faster runtime compared to mobile GPUs. Experiments reveal an inverse relationship between memory and energy at fixed accuracy, highlighting MERINDA’s suitability for resource-constrained, real-time MCAS. Read More
GRAFT: GRaPH and Table Reasoning for Textual Alignment — A Benchmark for Structured Instruction Following and Visual Reasoningcs.AI updates on arXiv.org arXiv:2508.15690v4 Announce Type: replace
Abstract: GRAFT is a structured multimodal benchmark designed to probe how well LLMs handle instruction following, visual reasoning, and tasks requiring tight visual textual alignment. The dataset is built around programmatically generated charts and synthetically rendered tables, each paired with a carefully constructed, multi step analytical question that depends solely on what can be inferred from the image itself. Responses are formatted in structured outputs such as JSON or YAML, enabling consistent and fine grained evaluation of both reasoning processes and adherence to output specifications. The benchmark further introduces a taxonomy of reasoning operations ranging from comparison and trend identification to ranking, aggregation, proportional estimation, and anomaly detection to support a comprehensive assessment of model capabilities. Taken together, GRAFT provides a unified and scalable framework for evaluating multimodal LLMs on visually grounded, structured reasoning tasks, offering a more rigorous standard for future benchmarking efforts.
arXiv:2508.15690v4 Announce Type: replace
Abstract: GRAFT is a structured multimodal benchmark designed to probe how well LLMs handle instruction following, visual reasoning, and tasks requiring tight visual textual alignment. The dataset is built around programmatically generated charts and synthetically rendered tables, each paired with a carefully constructed, multi step analytical question that depends solely on what can be inferred from the image itself. Responses are formatted in structured outputs such as JSON or YAML, enabling consistent and fine grained evaluation of both reasoning processes and adherence to output specifications. The benchmark further introduces a taxonomy of reasoning operations ranging from comparison and trend identification to ranking, aggregation, proportional estimation, and anomaly detection to support a comprehensive assessment of model capabilities. Taken together, GRAFT provides a unified and scalable framework for evaluating multimodal LLMs on visually grounded, structured reasoning tasks, offering a more rigorous standard for future benchmarking efforts. Read More