Since the end of the year is quickly approaching, it is undoubtedly a good time to look back at what the past twelve months have brought to us… And given that the entire cyber security profession is about protecting various systems from “bad things” (and we’ve all correspondingly seen more than our share of the […]
Cisco has alerted users to a maximum-severity zero-day flaw in Cisco AsyncOS software that has been actively exploited by a China-nexus advanced persistent threat (APT) actor codenamed UAT-9686 in attacks targeting Cisco Secure Email Gateway and Cisco Secure Email and Web Manager. The networking equipment major said it became aware of the intrusion campaign on […]
Microsoft has confirmed that recent Windows updates trigger RemoteApp connection failures on Windows 11 24H2/25H2 and Windows Server 2025 devices in Azure Virtual Desktop environments. […] Read More
The U.S. Cybersecurity and Infrastructure Security Agency (CISA) on Wednesday added a critical flaw impacting ASUS Live Update to its Known Exploited Vulnerabilities (KEV) catalog, citing evidence of active exploitation. The vulnerability, tracked as CVE-2025-59374 (CVSS score: 9.3), has been described as an “embedded malicious code vulnerability” introduced by means of a supply chain compromise Read […]
Wall Street’s AI gains are here — banks plan for fewer peopleAI News By December 2025, AI adoption on Wall Street had moved past experiments inside large US banks and into everyday operations. Speaking at a Goldman Sachs financial-services conference in New York on 9 December, bank executives described AI—particularly generative AI—as an operational upgrade already lifting productivity across engineering, operations, and customer service. The same discussion also
The post Wall Street’s AI gains are here — banks plan for fewer people appeared first on AI News.
By December 2025, AI adoption on Wall Street had moved past experiments inside large US banks and into everyday operations. Speaking at a Goldman Sachs financial-services conference in New York on 9 December, bank executives described AI—particularly generative AI—as an operational upgrade already lifting productivity across engineering, operations, and customer service. The same discussion also
The post Wall Street’s AI gains are here — banks plan for fewer people appeared first on AI News. Read More
A fine-grained look at causal effects in causal spacescs.AI updates on arXiv.org arXiv:2512.11919v2 Announce Type: replace-cross
Abstract: The notion of causal effect is fundamental across many scientific disciplines. Traditionally, quantitative researchers have studied causal effects at the level of variables; for example, how a certain drug dose (W) causally affects a patient’s blood pressure (Y). However, in many modern data domains, the raw variables-such as pixels in an image or tokens in a language model-do not have the semantic structure needed to formulate meaningful causal questions. In this paper, we offer a more fine-grained perspective by studying causal effects at the level of events, drawing inspiration from probability theory, where core notions such as independence are first given for events and sigma-algebras, before random variables enter the picture. Within the measure-theoretic framework of causal spaces, a recently introduced axiomatisation of causality, we first introduce several binary definitions that determine whether a causal effect is present, as well as proving some properties of them linking causal effect to (in)dependence under an intervention measure. Further, we provide quantifying measures that capture the strength and nature of causal effects on events, and show that we can recover the common measures of treatment effect as special cases.
arXiv:2512.11919v2 Announce Type: replace-cross
Abstract: The notion of causal effect is fundamental across many scientific disciplines. Traditionally, quantitative researchers have studied causal effects at the level of variables; for example, how a certain drug dose (W) causally affects a patient’s blood pressure (Y). However, in many modern data domains, the raw variables-such as pixels in an image or tokens in a language model-do not have the semantic structure needed to formulate meaningful causal questions. In this paper, we offer a more fine-grained perspective by studying causal effects at the level of events, drawing inspiration from probability theory, where core notions such as independence are first given for events and sigma-algebras, before random variables enter the picture. Within the measure-theoretic framework of causal spaces, a recently introduced axiomatisation of causality, we first introduce several binary definitions that determine whether a causal effect is present, as well as proving some properties of them linking causal effect to (in)dependence under an intervention measure. Further, we provide quantifying measures that capture the strength and nature of causal effects on events, and show that we can recover the common measures of treatment effect as special cases. Read More
Causal Structure Learning for Dynamical Systems with Theoretical Score Analysiscs.AI updates on arXiv.org arXiv:2512.14361v1 Announce Type: cross
Abstract: Real world systems evolve in continuous-time according to their underlying causal relationships, yet their dynamics are often unknown. Existing approaches to learning such dynamics typically either discretize time — leading to poor performance on irregularly sampled data — or ignore the underlying causality. We propose CaDyT, a novel method for causal discovery on dynamical systems addressing both these challenges. In contrast to state-of-the-art causal discovery methods that model the problem using discrete-time Dynamic Bayesian networks, our formulation is grounded in Difference-based causal models, which allow milder assumptions for modeling the continuous nature of the system. CaDyT leverages exact Gaussian Process inference for modeling the continuous-time dynamics which is more aligned with the underlying dynamical process. We propose a practical instantiation that identifies the causal structure via a greedy search guided by the Algorithmic Markov Condition and Minimum Description Length principle. Our experiments show that CaDyT outperforms state-of-the-art methods on both regularly and irregularly-sampled data, discovering causal networks closer to the true underlying dynamics.
arXiv:2512.14361v1 Announce Type: cross
Abstract: Real world systems evolve in continuous-time according to their underlying causal relationships, yet their dynamics are often unknown. Existing approaches to learning such dynamics typically either discretize time — leading to poor performance on irregularly sampled data — or ignore the underlying causality. We propose CaDyT, a novel method for causal discovery on dynamical systems addressing both these challenges. In contrast to state-of-the-art causal discovery methods that model the problem using discrete-time Dynamic Bayesian networks, our formulation is grounded in Difference-based causal models, which allow milder assumptions for modeling the continuous nature of the system. CaDyT leverages exact Gaussian Process inference for modeling the continuous-time dynamics which is more aligned with the underlying dynamical process. We propose a practical instantiation that identifies the causal structure via a greedy search guided by the Algorithmic Markov Condition and Minimum Description Length principle. Our experiments show that CaDyT outperforms state-of-the-art methods on both regularly and irregularly-sampled data, discovering causal networks closer to the true underlying dynamics. Read More
Masked Omics Modeling for Multimodal Representation Learning across Histopathology and Molecular Profilescs.AI updates on arXiv.org arXiv:2508.00969v2 Announce Type: replace-cross
Abstract: Self-supervised learning (SSL) has driven major advances in computational pathology by enabling the learning of rich representations from histopathology data. Yet, tissue analysis alone may fall short in capturing broader molecular complexity, as key complementary information resides in high-dimensional omics profiles such as transcriptomics, methylomics, and genomics. To address this gap, we introduce MORPHEUS, the first multimodal pre-training strategy that integrates histopathology images and multi-omics data within a shared transformer-based architecture. At its core, MORPHEUS relies on a novel masked omics modeling objective that encourages the model to learn meaningful cross-modal relationships. This yields a general-purpose pre-trained encoder that can be applied to histopathology alone or in combination with any subset of omics modalities. Beyond inference, MORPHEUS also supports flexible any-to-any omics reconstruction, enabling one or more omics profiles to be reconstructed from any modality subset that includes histopathology. Pre-trained on a large pan-cancer cohort, MORPHEUS shows substantial improvements over supervised and SSL baselines across diverse tasks and modality combinations. Together, these capabilities position it as a promising direction for the development of multimodal foundation models in oncology. Code is publicly available at https://github.com/Lucas-rbnt/MORPHEUS
arXiv:2508.00969v2 Announce Type: replace-cross
Abstract: Self-supervised learning (SSL) has driven major advances in computational pathology by enabling the learning of rich representations from histopathology data. Yet, tissue analysis alone may fall short in capturing broader molecular complexity, as key complementary information resides in high-dimensional omics profiles such as transcriptomics, methylomics, and genomics. To address this gap, we introduce MORPHEUS, the first multimodal pre-training strategy that integrates histopathology images and multi-omics data within a shared transformer-based architecture. At its core, MORPHEUS relies on a novel masked omics modeling objective that encourages the model to learn meaningful cross-modal relationships. This yields a general-purpose pre-trained encoder that can be applied to histopathology alone or in combination with any subset of omics modalities. Beyond inference, MORPHEUS also supports flexible any-to-any omics reconstruction, enabling one or more omics profiles to be reconstructed from any modality subset that includes histopathology. Pre-trained on a large pan-cancer cohort, MORPHEUS shows substantial improvements over supervised and SSL baselines across diverse tasks and modality combinations. Together, these capabilities position it as a promising direction for the development of multimodal foundation models in oncology. Code is publicly available at https://github.com/Lucas-rbnt/MORPHEUS Read More
STEMS: Spatial-Temporal Enhanced Safe Multi-Agent Coordination for Building Energy Managementcs.AI updates on arXiv.org arXiv:2510.14112v2 Announce Type: replace
Abstract: Building energy management is essential for achieving carbon reduction goals, improving occupant comfort, and reducing energy costs. Coordinated building energy management faces critical challenges in exploiting spatial-temporal dependencies while ensuring operational safety across multi-building systems. Current multi-building energy systems face three key challenges: insufficient spatial-temporal information exploitation, lack of rigorous safety guarantees, and system complexity. This paper proposes Spatial-Temporal Enhanced Safe Multi-Agent Coordination (STEMS), a novel safety-constrained multi-agent reinforcement learning framework for coordinated building energy management. STEMS integrates two core components: (1) a spatial-temporal graph representation learning framework using a GCN-Transformer fusion architecture to capture inter-building relationships and temporal patterns, and (2) a safety-constrained multi-agent RL algorithm incorporating Control Barrier Functions to provide mathematical safety guarantees. Extensive experiments on real-world building datasets demonstrate STEMS’s superior performance over existing methods, showing that STEMS achieves 21% cost reduction, 18% emission reduction, and dramatically reduces safety violations from 35.1% to 5.6% while maintaining optimal comfort with only 0.13 discomfort proportion. The framework also demonstrates strong robustness during extreme weather conditions and maintains effectiveness across different building types.
arXiv:2510.14112v2 Announce Type: replace
Abstract: Building energy management is essential for achieving carbon reduction goals, improving occupant comfort, and reducing energy costs. Coordinated building energy management faces critical challenges in exploiting spatial-temporal dependencies while ensuring operational safety across multi-building systems. Current multi-building energy systems face three key challenges: insufficient spatial-temporal information exploitation, lack of rigorous safety guarantees, and system complexity. This paper proposes Spatial-Temporal Enhanced Safe Multi-Agent Coordination (STEMS), a novel safety-constrained multi-agent reinforcement learning framework for coordinated building energy management. STEMS integrates two core components: (1) a spatial-temporal graph representation learning framework using a GCN-Transformer fusion architecture to capture inter-building relationships and temporal patterns, and (2) a safety-constrained multi-agent RL algorithm incorporating Control Barrier Functions to provide mathematical safety guarantees. Extensive experiments on real-world building datasets demonstrate STEMS’s superior performance over existing methods, showing that STEMS achieves 21% cost reduction, 18% emission reduction, and dramatically reduces safety violations from 35.1% to 5.6% while maintaining optimal comfort with only 0.13 discomfort proportion. The framework also demonstrates strong robustness during extreme weather conditions and maintains effectiveness across different building types. Read More
Text-guided multi-property molecular optimization with a diffusion language modelcs.AI updates on arXiv.org arXiv:2410.13597v4 Announce Type: replace-cross
Abstract: Molecular optimization (MO) is a crucial stage in drug discovery in which task-oriented generated molecules are optimized to meet practical industrial requirements. Existing mainstream MO approaches primarily utilize external property predictors to guide iterative property optimization. However, learning all molecular samples in the vast chemical space is unrealistic for predictors. As a result, errors and noise are inevitably introduced during property prediction due to the nature of approximation. This leads to discrepancy accumulation, generalization reduction and suboptimal molecular candidates. In this paper, we propose a text-guided multi-property molecular optimization method utilizing transformer-based diffusion language model (TransDLM). TransDLM leverages standardized chemical nomenclature as semantic representations of molecules and implicitly embeds property requirements into textual descriptions, thereby mitigating error propagation during diffusion process. By fusing physically and chemically detailed textual semantics with specialized molecular representations, TransDLM effectively integrates diverse information sources to guide precise optimization, which enhances the model’s ability to balance structural retention and property enhancement. Additionally, the success of a case study further demonstrates TransDLM’s ability to solve practical problems. Experimentally, our approach surpasses state-of-the-art methods in maintaining molecular structural similarity and enhancing chemical properties on the benchmark dataset.
arXiv:2410.13597v4 Announce Type: replace-cross
Abstract: Molecular optimization (MO) is a crucial stage in drug discovery in which task-oriented generated molecules are optimized to meet practical industrial requirements. Existing mainstream MO approaches primarily utilize external property predictors to guide iterative property optimization. However, learning all molecular samples in the vast chemical space is unrealistic for predictors. As a result, errors and noise are inevitably introduced during property prediction due to the nature of approximation. This leads to discrepancy accumulation, generalization reduction and suboptimal molecular candidates. In this paper, we propose a text-guided multi-property molecular optimization method utilizing transformer-based diffusion language model (TransDLM). TransDLM leverages standardized chemical nomenclature as semantic representations of molecules and implicitly embeds property requirements into textual descriptions, thereby mitigating error propagation during diffusion process. By fusing physically and chemically detailed textual semantics with specialized molecular representations, TransDLM effectively integrates diverse information sources to guide precise optimization, which enhances the model’s ability to balance structural retention and property enhancement. Additionally, the success of a case study further demonstrates TransDLM’s ability to solve practical problems. Experimentally, our approach surpasses state-of-the-art methods in maintaining molecular structural similarity and enhancing chemical properties on the benchmark dataset. Read More