Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

Daily AI News
AnomSeer: Reinforcing Multimodal LLMs to Reason for Time-Series Anomaly Detection AI updates on arXiv.org

AnomSeer: Reinforcing Multimodal LLMs to Reason for Time-Series Anomaly Detection AI updates on arXiv.org

AnomSeer: Reinforcing Multimodal LLMs to Reason for Time-Series Anomaly Detectioncs.AI updates on arXiv.org arXiv:2602.08868v1 Announce Type: cross
Abstract: Time-series anomaly detection (TSAD) with multimodal large language models (MLLMs) is an emerging area, yet a persistent challenge remains: MLLMs rely on coarse time-series heuristics but struggle with multi-dimensional, detailed reasoning, which is vital for understanding complex time-series data. We present AnomSeer to address this by reinforcing the model to ground its reasoning in precise, structural details of time series, unifying anomaly classification, localization, and explanation. At its core, an expert chain-of-thought trace is generated to provide a verifiable, fine-grained reasoning from classical analyses (e.g., statistical measures, frequency transforms). Building on this, we propose a novel time-series grounded policy optimization (TimerPO) that incorporates two additional components beyond standard reinforcement learning: a time-series grounded advantage based on optimal transport and an orthogonal projection to ensure this auxiliary granular signal does not interfere with the primary detection objective. Across diverse anomaly scenarios, AnomSeer, with Qwen2.5-VL-3B/7B-Instruct, outperforms larger commercial baselines (e.g., GPT-4o) in classification and localization accuracy, particularly on point- and frequency-driven exceptions. Moreover, it produces plausible time-series reasoning traces that support its conclusions.

 arXiv:2602.08868v1 Announce Type: cross
Abstract: Time-series anomaly detection (TSAD) with multimodal large language models (MLLMs) is an emerging area, yet a persistent challenge remains: MLLMs rely on coarse time-series heuristics but struggle with multi-dimensional, detailed reasoning, which is vital for understanding complex time-series data. We present AnomSeer to address this by reinforcing the model to ground its reasoning in precise, structural details of time series, unifying anomaly classification, localization, and explanation. At its core, an expert chain-of-thought trace is generated to provide a verifiable, fine-grained reasoning from classical analyses (e.g., statistical measures, frequency transforms). Building on this, we propose a novel time-series grounded policy optimization (TimerPO) that incorporates two additional components beyond standard reinforcement learning: a time-series grounded advantage based on optimal transport and an orthogonal projection to ensure this auxiliary granular signal does not interfere with the primary detection objective. Across diverse anomaly scenarios, AnomSeer, with Qwen2.5-VL-3B/7B-Instruct, outperforms larger commercial baselines (e.g., GPT-4o) in classification and localization accuracy, particularly on point- and frequency-driven exceptions. Moreover, it produces plausible time-series reasoning traces that support its conclusions. Read More  

Daily AI News
Moonworks Lunara Aesthetic Dataset AI updates on arXiv.org

Moonworks Lunara Aesthetic Dataset AI updates on arXiv.org

Moonworks Lunara Aesthetic Datasetcs.AI updates on arXiv.org arXiv:2601.07941v4 Announce Type: replace-cross
Abstract: The dataset spans diverse artistic styles, including regionally grounded aesthetics from the Middle East, Northern Europe, East Asia, and South Asia, alongside general categories such as sketch and oil painting. All images are generated using the Moonworks Lunara model and intentionally crafted to embody distinct, high-quality aesthetic styles, yielding a first-of-its-kind dataset with substantially higher aesthetic scores, exceeding even aesthetics-focused datasets, and general-purpose datasets by a larger margin. Each image is accompanied by a human-refined prompt and structured annotations that jointly describe salient objects, attributes, relationships, and stylistic cues. Unlike large-scale web-derived datasets that emphasize breadth over precision, the Lunara Aesthetic Dataset prioritizes aesthetic quality, stylistic diversity, and licensing transparency, and is released under the Apache 2.0 license to support research and unrestricted academic and commercial use.

 arXiv:2601.07941v4 Announce Type: replace-cross
Abstract: The dataset spans diverse artistic styles, including regionally grounded aesthetics from the Middle East, Northern Europe, East Asia, and South Asia, alongside general categories such as sketch and oil painting. All images are generated using the Moonworks Lunara model and intentionally crafted to embody distinct, high-quality aesthetic styles, yielding a first-of-its-kind dataset with substantially higher aesthetic scores, exceeding even aesthetics-focused datasets, and general-purpose datasets by a larger margin. Each image is accompanied by a human-refined prompt and structured annotations that jointly describe salient objects, attributes, relationships, and stylistic cues. Unlike large-scale web-derived datasets that emphasize breadth over precision, the Lunara Aesthetic Dataset prioritizes aesthetic quality, stylistic diversity, and licensing transparency, and is released under the Apache 2.0 license to support research and unrestricted academic and commercial use. Read More  

Daily AI News
Tighnari v2: Mitigating Label Noise and Distribution Shift in Multimodal Plant Distribution Prediction via Mixture of Experts and Weakly Supervised Learning AI updates on arXiv.org

Tighnari v2: Mitigating Label Noise and Distribution Shift in Multimodal Plant Distribution Prediction via Mixture of Experts and Weakly Supervised Learning AI updates on arXiv.org

Tighnari v2: Mitigating Label Noise and Distribution Shift in Multimodal Plant Distribution Prediction via Mixture of Experts and Weakly Supervised Learningcs.AI updates on arXiv.org arXiv:2602.08282v1 Announce Type: cross
Abstract: Large-scale, cross-species plant distribution prediction plays a crucial role in biodiversity conservation, yet modeling efforts in this area still face significant challenges due to the sparsity and bias of observational data. Presence-Absence (PA) data provide accurate and noise-free labels, but are costly to obtain and limited in quantity; Presence-Only (PO) data, by contrast, offer broad spatial coverage and rich spatiotemporal distribution, but suffer from severe label noise in negative samples. To address these real-world constraints, this paper proposes a multimodal fusion framework that fully leverages the strengths of both PA and PO data. We introduce an innovative pseudo-label aggregation strategy for PO data based on the geographic coverage of satellite imagery, enabling geographic alignment between the label space and remote sensing feature space. In terms of model architecture, we adopt Swin Transformer Base as the backbone for satellite imagery, utilize the TabM network for tabular feature extraction, retain the Temporal Swin Transformer for time-series modeling, and employ a stackable serial tri-modal cross-attention mechanism to optimize the fusion of heterogeneous modalities. Furthermore, empirical analysis reveals significant geographic distribution shifts between PA training and test samples, and models trained by directly mixing PO and PA data tend to experience performance degradation due to label noise in PO data. To address this, we draw on the mixture-of-experts paradigm: test samples are partitioned according to their spatial proximity to PA samples, and different models trained on distinct datasets are used for inference and post-processing within each partition. Experiments on the GeoLifeCLEF 2025 dataset demonstrate that our approach achieves superior predictive performance in scenarios with limited PA coverage and pronounced distribution shifts.

 arXiv:2602.08282v1 Announce Type: cross
Abstract: Large-scale, cross-species plant distribution prediction plays a crucial role in biodiversity conservation, yet modeling efforts in this area still face significant challenges due to the sparsity and bias of observational data. Presence-Absence (PA) data provide accurate and noise-free labels, but are costly to obtain and limited in quantity; Presence-Only (PO) data, by contrast, offer broad spatial coverage and rich spatiotemporal distribution, but suffer from severe label noise in negative samples. To address these real-world constraints, this paper proposes a multimodal fusion framework that fully leverages the strengths of both PA and PO data. We introduce an innovative pseudo-label aggregation strategy for PO data based on the geographic coverage of satellite imagery, enabling geographic alignment between the label space and remote sensing feature space. In terms of model architecture, we adopt Swin Transformer Base as the backbone for satellite imagery, utilize the TabM network for tabular feature extraction, retain the Temporal Swin Transformer for time-series modeling, and employ a stackable serial tri-modal cross-attention mechanism to optimize the fusion of heterogeneous modalities. Furthermore, empirical analysis reveals significant geographic distribution shifts between PA training and test samples, and models trained by directly mixing PO and PA data tend to experience performance degradation due to label noise in PO data. To address this, we draw on the mixture-of-experts paradigm: test samples are partitioned according to their spatial proximity to PA samples, and different models trained on distinct datasets are used for inference and post-processing within each partition. Experiments on the GeoLifeCLEF 2025 dataset demonstrate that our approach achieves superior predictive performance in scenarios with limited PA coverage and pronounced distribution shifts. Read More  

Daily AI News
Is there “Secret Sauce” in Large Language Model Development? AI updates on arXiv.org

Is there “Secret Sauce” in Large Language Model Development? AI updates on arXiv.org

Is there “Secret Sauce” in Large Language Model Development?cs.AI updates on arXiv.org arXiv:2602.07238v1 Announce Type: new
Abstract: Do leading LLM developers possess a proprietary “secret sauce”, or is LLM performance driven by scaling up compute? Using training and benchmark data for 809 models released between 2022 and 2025, we estimate scaling-law regressions with release-date and developer fixed effects. We find clear evidence of developer-specific efficiency advantages, but their importance depends on where models lie in the performance distribution. At the frontier, 80-90% of performance differences are explained by higher training compute, implying that scale–not proprietary technology–drives frontier advances. Away from the frontier, however, proprietary techniques and shared algorithmic progress substantially reduce the compute required to reach fixed capability thresholds. Some companies can systematically produce smaller models more efficiently. Strikingly, we also find substantial variation of model efficiency within companies; a firm can train two models with more than 40x compute efficiency difference. We also discuss the implications for AI leadership and capability diffusion.

 arXiv:2602.07238v1 Announce Type: new
Abstract: Do leading LLM developers possess a proprietary “secret sauce”, or is LLM performance driven by scaling up compute? Using training and benchmark data for 809 models released between 2022 and 2025, we estimate scaling-law regressions with release-date and developer fixed effects. We find clear evidence of developer-specific efficiency advantages, but their importance depends on where models lie in the performance distribution. At the frontier, 80-90% of performance differences are explained by higher training compute, implying that scale–not proprietary technology–drives frontier advances. Away from the frontier, however, proprietary techniques and shared algorithmic progress substantially reduce the compute required to reach fixed capability thresholds. Some companies can systematically produce smaller models more efficiently. Strikingly, we also find substantial variation of model efficiency within companies; a firm can train two models with more than 40x compute efficiency difference. We also discuss the implications for AI leadership and capability diffusion. Read More  

Daily AI News
ANCHOR: Branch-Point Data Generation for GUI Agents AI updates on arXiv.org

ANCHOR: Branch-Point Data Generation for GUI Agents AI updates on arXiv.org

ANCHOR: Branch-Point Data Generation for GUI Agentscs.AI updates on arXiv.org arXiv:2602.07153v1 Announce Type: new
Abstract: End-to-end GUI agents for real desktop environments require large amounts of high-quality interaction data, yet collecting human demonstrations is expensive and existing synthetic pipelines often suffer from limited task diversity or noisy, goal-drifting trajectories. We present a trajectory expansion framework Anchor that bootstraps scalable desktop supervision from a small set of verified seed demonstrations. Starting from each seed, we identify branch points that correspond to meaningful state changes and propose new, state-grounded task variants conditioned on the current GUI context. An executing agent then follows the proposed instructions to generate new trajectories, while a verifier enforces task completion via state-aware checks and trajectory-level consistency. To improve supervision quality, we further apply task-conditioned step-level filtering to remove ungrounded actions and denoise post-branch segments to maintain coherent intent. Experiments on standard desktop benchmarks, OSWorld and WindowsAgentArena, show that models fine-tuned on our expanded corpus achieve consistent improvements over zero-shot agents and representative synthesis baselines, and generalize across applications and operating systems.

 arXiv:2602.07153v1 Announce Type: new
Abstract: End-to-end GUI agents for real desktop environments require large amounts of high-quality interaction data, yet collecting human demonstrations is expensive and existing synthetic pipelines often suffer from limited task diversity or noisy, goal-drifting trajectories. We present a trajectory expansion framework Anchor that bootstraps scalable desktop supervision from a small set of verified seed demonstrations. Starting from each seed, we identify branch points that correspond to meaningful state changes and propose new, state-grounded task variants conditioned on the current GUI context. An executing agent then follows the proposed instructions to generate new trajectories, while a verifier enforces task completion via state-aware checks and trajectory-level consistency. To improve supervision quality, we further apply task-conditioned step-level filtering to remove ungrounded actions and denoise post-branch segments to maintain coherent intent. Experiments on standard desktop benchmarks, OSWorld and WindowsAgentArena, show that models fine-tuned on our expanded corpus achieve consistent improvements over zero-shot agents and representative synthesis baselines, and generalize across applications and operating systems. Read More