Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

Daily AI News
AI News & Insights Featured Image

How to Train Your Long-Context Visual Document Model AI updates on arXiv.org

How to Train Your Long-Context Visual Document Modelcs.AI updates on arXiv.org arXiv:2602.15257v1 Announce Type: cross
Abstract: We present the first comprehensive, large-scale study of training long-context vision language models up to 344K context, targeting long-document visual question answering with measured transfer to long-context text. While several such strong are open-weight, namely Qwen3 VL and GLM 4.5/6V, their training recipes and data pipelines are not reproducible. We systematically study continued pretraining, supervised finetuning, and preference optimization for 24B and 32B parameter models, backed by extensive LC evaluations and ablations to bridge this gap, and achieve state-of-the-art performance on MMLongBenchDoc for both parameter scales. In addition to this, our key findings include: (i) training on context lengths that match evaluation context lengths outperforms training on longer contexts, (ii) training and evaluating with page indices provides a simple, high-impact boost to long-document performance, (iii) our synthetic data pipelines enable self-improvement via continued pretraining and supervised finetuning, and (iv) we extend the known text-to-visual long context transfer to the reverse, showing that visual long context training transfers to long-context text performance. We also release MMLBD-C, a manually corrected version of MMLongBenchDoc to reduce erroneous and low quality examples in the benchmark.

 arXiv:2602.15257v1 Announce Type: cross
Abstract: We present the first comprehensive, large-scale study of training long-context vision language models up to 344K context, targeting long-document visual question answering with measured transfer to long-context text. While several such strong are open-weight, namely Qwen3 VL and GLM 4.5/6V, their training recipes and data pipelines are not reproducible. We systematically study continued pretraining, supervised finetuning, and preference optimization for 24B and 32B parameter models, backed by extensive LC evaluations and ablations to bridge this gap, and achieve state-of-the-art performance on MMLongBenchDoc for both parameter scales. In addition to this, our key findings include: (i) training on context lengths that match evaluation context lengths outperforms training on longer contexts, (ii) training and evaluating with page indices provides a simple, high-impact boost to long-document performance, (iii) our synthetic data pipelines enable self-improvement via continued pretraining and supervised finetuning, and (iv) we extend the known text-to-visual long context transfer to the reverse, showing that visual long context training transfers to long-context text performance. We also release MMLBD-C, a manually corrected version of MMLongBenchDoc to reduce erroneous and low quality examples in the benchmark. Read More  

Daily AI News
AI News & Insights Featured Image

Relative Geometry of Neural Forecasters: Linking Accuracy and Alignment in Learned Latent Geometry AI updates on arXiv.org

Relative Geometry of Neural Forecasters: Linking Accuracy and Alignment in Learned Latent Geometrycs.AI updates on arXiv.org arXiv:2602.15676v1 Announce Type: cross
Abstract: Neural networks can accurately forecast complex dynamical systems, yet how they internally represent underlying latent geometry remains poorly understood. We study neural forecasters through the lens of representational alignment, introducing anchor-based, geometry-agnostic relative embeddings that remove rotational and scaling ambiguities in latent spaces. Applying this framework across seven canonical dynamical systems – ranging from periodic to chaotic – we reveal reproducible family-level structure: multilayer perceptrons align with other MLPs, recurrent networks with RNNs, while transformers and echo-state networks achieve strong forecasts despite weaker alignment. Alignment generally correlates with forecasting accuracy, yet high accuracy can coexist with low alignment. Relative geometry thus provides a simple, reproducible foundation for comparing how model families internalize and represent dynamical structure.

 arXiv:2602.15676v1 Announce Type: cross
Abstract: Neural networks can accurately forecast complex dynamical systems, yet how they internally represent underlying latent geometry remains poorly understood. We study neural forecasters through the lens of representational alignment, introducing anchor-based, geometry-agnostic relative embeddings that remove rotational and scaling ambiguities in latent spaces. Applying this framework across seven canonical dynamical systems – ranging from periodic to chaotic – we reveal reproducible family-level structure: multilayer perceptrons align with other MLPs, recurrent networks with RNNs, while transformers and echo-state networks achieve strong forecasts despite weaker alignment. Alignment generally correlates with forecasting accuracy, yet high accuracy can coexist with low alignment. Relative geometry thus provides a simple, reproducible foundation for comparing how model families internalize and represent dynamical structure. Read More  

Daily AI News
AI News & Insights Featured Image

Dynamic Training-Free Fusion of Subject and Style LoRAs AI updates on arXiv.org

Dynamic Training-Free Fusion of Subject and Style LoRAscs.AI updates on arXiv.org arXiv:2602.15539v1 Announce Type: cross
Abstract: Recent studies have explored the combination of multiple LoRAs to simultaneously generate user-specified subjects and styles. However, most existing approaches fuse LoRA weights using static statistical heuristics that deviate from LoRA’s original purpose of learning adaptive feature adjustments and ignore the randomness of sampled inputs. To address this, we propose a dynamic training-free fusion framework that operates throughout the generation process. During the forward pass, at each LoRA-applied layer, we dynamically compute the KL divergence between the base model’s original features and those produced by subject and style LoRAs, respectively, and adaptively select the most appropriate weights for fusion. In the reverse denoising stage, we further refine the generation trajectory by dynamically applying gradient-based corrections derived from objective metrics such as CLIP and DINO scores, providing continuous semantic and stylistic guidance. By integrating these two complementary mechanisms-feature-level selection and metric-guided latent adjustment-across the entire diffusion timeline, our method dynamically achieves coherent subject-style synthesis without any retraining. Extensive experiments across diverse subject-style combinations demonstrate that our approach consistently outperforms state-of-the-art LoRA fusion methods both qualitatively and quantitatively.

 arXiv:2602.15539v1 Announce Type: cross
Abstract: Recent studies have explored the combination of multiple LoRAs to simultaneously generate user-specified subjects and styles. However, most existing approaches fuse LoRA weights using static statistical heuristics that deviate from LoRA’s original purpose of learning adaptive feature adjustments and ignore the randomness of sampled inputs. To address this, we propose a dynamic training-free fusion framework that operates throughout the generation process. During the forward pass, at each LoRA-applied layer, we dynamically compute the KL divergence between the base model’s original features and those produced by subject and style LoRAs, respectively, and adaptively select the most appropriate weights for fusion. In the reverse denoising stage, we further refine the generation trajectory by dynamically applying gradient-based corrections derived from objective metrics such as CLIP and DINO scores, providing continuous semantic and stylistic guidance. By integrating these two complementary mechanisms-feature-level selection and metric-guided latent adjustment-across the entire diffusion timeline, our method dynamically achieves coherent subject-style synthesis without any retraining. Extensive experiments across diverse subject-style combinations demonstrate that our approach consistently outperforms state-of-the-art LoRA fusion methods both qualitatively and quantitatively. Read More  

Daily AI News
AI News & Insights Featured Image

NeuroSymActive: Differentiable Neural-Symbolic Reasoning with Active Exploration for Knowledge Graph Question Answering AI updates on arXiv.org

NeuroSymActive: Differentiable Neural-Symbolic Reasoning with Active Exploration for Knowledge Graph Question Answeringcs.AI updates on arXiv.org arXiv:2602.15353v1 Announce Type: cross
Abstract: Large pretrained language models and neural reasoning systems have advanced many natural language tasks, yet they remain challenged by knowledge-intensive queries that require precise, structured multi-hop inference. Knowledge graphs provide a compact symbolic substrate for factual grounding, but integrating graph structure with neural models is nontrivial: naively embedding graph facts into prompts leads to inefficiency and fragility, while purely symbolic or search-heavy approaches can be costly in retrievals and lack gradient-based refinement. We introduce NeuroSymActive, a modular framework that combines a differentiable neural-symbolic reasoning layer with an active, value-guided exploration controller for Knowledge Graph Question Answering. The method couples soft-unification style symbolic modules with a neural path evaluator and a Monte-Carlo style exploration policy that prioritizes high-value path expansions. Empirical results on standard KGQA benchmarks show that NeuroSymActive attains strong answer accuracy while reducing the number of expensive graph lookups and model calls compared to common retrieval-augmented baselines.

 arXiv:2602.15353v1 Announce Type: cross
Abstract: Large pretrained language models and neural reasoning systems have advanced many natural language tasks, yet they remain challenged by knowledge-intensive queries that require precise, structured multi-hop inference. Knowledge graphs provide a compact symbolic substrate for factual grounding, but integrating graph structure with neural models is nontrivial: naively embedding graph facts into prompts leads to inefficiency and fragility, while purely symbolic or search-heavy approaches can be costly in retrievals and lack gradient-based refinement. We introduce NeuroSymActive, a modular framework that combines a differentiable neural-symbolic reasoning layer with an active, value-guided exploration controller for Knowledge Graph Question Answering. The method couples soft-unification style symbolic modules with a neural path evaluator and a Monte-Carlo style exploration policy that prioritizes high-value path expansions. Empirical results on standard KGQA benchmarks show that NeuroSymActive attains strong answer accuracy while reducing the number of expensive graph lookups and model calls compared to common retrieval-augmented baselines. Read More  

Daily AI News
AI News & Insights Featured Image

Secure and Energy-Efficient Wireless Agentic AI Networks AI updates on arXiv.org

Secure and Energy-Efficient Wireless Agentic AI Networkscs.AI updates on arXiv.org arXiv:2602.15212v1 Announce Type: new
Abstract: In this paper, we introduce a secure wireless agentic AI network comprising one supervisor AI agent and multiple other AI agents to provision quality of service (QoS) for users’ reasoning tasks while ensuring confidentiality of private knowledge and reasoning outcomes. Specifically, the supervisor AI agent can dynamically assign other AI agents to participate in cooperative reasoning, while the unselected AI agents act as friendly jammers to degrade the eavesdropper’s interception performance. To extend the service duration of AI agents, an energy minimization problem is formulated that jointly optimizes AI agent selection, base station (BS) beamforming, and AI agent transmission power, subject to latency and reasoning accuracy constraints. To address the formulated problem, we propose two resource allocation schemes, ASC and LAW, which first decompose it into three sub-problems. Specifically, ASC optimizes each sub-problem iteratively using the proposed alternating direction method of multipliers (ADMM)-based algorithm, semi-definite relaxation (SDR), and successive convex approximation (SCA), while LAW tackles each sub-problem using the proposed large language model (LLM) optimizer within an agentic workflow. The experimental results show that the proposed solutions can reduce network energy consumption by up to 59.1% compared to other benchmark schemes. Furthermore, the proposed schemes are validated using a practical agentic AI system based on Qwen, demonstrating satisfactory reasoning accuracy across various public benchmarks.

 arXiv:2602.15212v1 Announce Type: new
Abstract: In this paper, we introduce a secure wireless agentic AI network comprising one supervisor AI agent and multiple other AI agents to provision quality of service (QoS) for users’ reasoning tasks while ensuring confidentiality of private knowledge and reasoning outcomes. Specifically, the supervisor AI agent can dynamically assign other AI agents to participate in cooperative reasoning, while the unselected AI agents act as friendly jammers to degrade the eavesdropper’s interception performance. To extend the service duration of AI agents, an energy minimization problem is formulated that jointly optimizes AI agent selection, base station (BS) beamforming, and AI agent transmission power, subject to latency and reasoning accuracy constraints. To address the formulated problem, we propose two resource allocation schemes, ASC and LAW, which first decompose it into three sub-problems. Specifically, ASC optimizes each sub-problem iteratively using the proposed alternating direction method of multipliers (ADMM)-based algorithm, semi-definite relaxation (SDR), and successive convex approximation (SCA), while LAW tackles each sub-problem using the proposed large language model (LLM) optimizer within an agentic workflow. The experimental results show that the proposed solutions can reduce network energy consumption by up to 59.1% compared to other benchmark schemes. Furthermore, the proposed schemes are validated using a practical agentic AI system based on Qwen, demonstrating satisfactory reasoning accuracy across various public benchmarks. Read More  

Daily AI News
AI News & Insights Featured Image

Mind the (DH) Gap! A Contrast in Risky Choices Between Reasoning and Conversational LLMs AI updates on arXiv.org

Mind the (DH) Gap! A Contrast in Risky Choices Between Reasoning and Conversational LLMscs.AI updates on arXiv.org arXiv:2602.15173v1 Announce Type: new
Abstract: The use of large language models either as decision support systems, or in agentic workflows, is rapidly transforming the digital ecosystem. However, the understanding of LLM decision-making under uncertainty remains limited. We initiate a comparative study of LLM risky choices along two dimensions: (1) prospect representation (explicit vs. experience based) and (2) decision rationale (explanation). Our study, which involves 20 frontier and open LLMs, is complemented by a matched human subjects experiment, which provides one reference point, while an expected payoff maximizing rational agent model provides another. We find that LLMs cluster into two categories: reasoning models (RMs) and conversational models (CMs). RMs tend towards rational behavior, are insensitive to the order of prospects, gain/loss framing, and explanations, and behave similarly whether prospects are explicit or presented via experience history. CMs are significantly less rational, slightly more human-like, sensitive to prospect ordering, framing, and explanation, and exhibit a large description-history gap. Paired comparisons of open LLMs suggest that a key factor differentiating RMs and CMs is training for mathematical reasoning.

 arXiv:2602.15173v1 Announce Type: new
Abstract: The use of large language models either as decision support systems, or in agentic workflows, is rapidly transforming the digital ecosystem. However, the understanding of LLM decision-making under uncertainty remains limited. We initiate a comparative study of LLM risky choices along two dimensions: (1) prospect representation (explicit vs. experience based) and (2) decision rationale (explanation). Our study, which involves 20 frontier and open LLMs, is complemented by a matched human subjects experiment, which provides one reference point, while an expected payoff maximizing rational agent model provides another. We find that LLMs cluster into two categories: reasoning models (RMs) and conversational models (CMs). RMs tend towards rational behavior, are insensitive to the order of prospects, gain/loss framing, and explanations, and behave similarly whether prospects are explicit or presented via experience history. CMs are significantly less rational, slightly more human-like, sensitive to prospect ordering, framing, and explanation, and exhibit a large description-history gap. Paired comparisons of open LLMs suggest that a key factor differentiating RMs and CMs is training for mathematical reasoning. Read More  

Daily AI News
AI News & Insights Featured Image

Google Introduces Jetpack Compose Glimmer: A New Spatial UI Framework Designed Specifically for the Next Generation of AI Glasses MarkTechPost

Google Introduces Jetpack Compose Glimmer: A New Spatial UI Framework Designed Specifically for the Next Generation of AI GlassesMarkTechPost Google is moving beyond the rectangular screen. For over 10 years, Google designers have explored how to build interfaces for transparent displays. The result is Jetpack Compose Glimmer, a design system built specifically for display AI glasses. For devs and data scientists, this is a shift from designing for pixels to designing with light. The
The post Google Introduces Jetpack Compose Glimmer: A New Spatial UI Framework Designed Specifically for the Next Generation of AI Glasses appeared first on MarkTechPost.

 Google is moving beyond the rectangular screen. For over 10 years, Google designers have explored how to build interfaces for transparent displays. The result is Jetpack Compose Glimmer, a design system built specifically for display AI glasses. For devs and data scientists, this is a shift from designing for pixels to designing with light. The
The post Google Introduces Jetpack Compose Glimmer: A New Spatial UI Framework Designed Specifically for the Next Generation of AI Glasses appeared first on MarkTechPost. Read More  

Security News
dsm FUGF4s

Cybersecurity Tech Predictions for 2026: Operating in a World of Permanent Instability The Hacker Newsinfo@thehackernews.com (The Hacker News)

In 2025, navigating the digital seas still felt like a matter of direction. Organizations charted routes, watched the horizon, and adjusted course to reach safe harbors of resilience, trust, and compliance. In 2026, the seas are no longer calm between storms. Cybersecurity now unfolds in a state of continuous atmospheric instability: AI-driven threats that adapt in […]

Daily AI News
AI News & Insights Featured Image

CrispEdit: Low-Curvature Projections for Scalable Non-Destructive LLM Editing AI updates on arXiv.org

CrispEdit: Low-Curvature Projections for Scalable Non-Destructive LLM Editingcs.AI updates on arXiv.org arXiv:2602.15823v1 Announce Type: cross
Abstract: A central challenge in large language model (LLM) editing is capability preservation: methods that successfully change targeted behavior can quietly game the editing proxy and corrupt general capabilities, producing degenerate behaviors reminiscent of proxy/reward hacking. We present CrispEdit, a scalable and principled second-order editing algorithm that treats capability preservation as an explicit constraint, unifying and generalizing several existing editing approaches. CrispEdit formulates editing as constrained optimization and enforces the constraint by projecting edit updates onto the low-curvature subspace of the capability-loss landscape. At the crux of CrispEdit is expressing capability constraint via Bregman divergence, whose quadratic form yields the Gauss-Newton Hessian exactly and even when the base model is not trained to convergence. We make this second-order procedure efficient at the LLM scale using Kronecker-factored approximate curvature (K-FAC) and a novel matrix-free projector that exploits Kronecker structure to avoid constructing massive projection matrices. Across standard model-editing benchmarks, CrispEdit achieves high edit success while keeping capability degradation below 1% on average across datasets, significantly improving over prior editors.

 arXiv:2602.15823v1 Announce Type: cross
Abstract: A central challenge in large language model (LLM) editing is capability preservation: methods that successfully change targeted behavior can quietly game the editing proxy and corrupt general capabilities, producing degenerate behaviors reminiscent of proxy/reward hacking. We present CrispEdit, a scalable and principled second-order editing algorithm that treats capability preservation as an explicit constraint, unifying and generalizing several existing editing approaches. CrispEdit formulates editing as constrained optimization and enforces the constraint by projecting edit updates onto the low-curvature subspace of the capability-loss landscape. At the crux of CrispEdit is expressing capability constraint via Bregman divergence, whose quadratic form yields the Gauss-Newton Hessian exactly and even when the base model is not trained to convergence. We make this second-order procedure efficient at the LLM scale using Kronecker-factored approximate curvature (K-FAC) and a novel matrix-free projector that exploits Kronecker structure to avoid constructing massive projection matrices. Across standard model-editing benchmarks, CrispEdit achieves high edit success while keeping capability degradation below 1% on average across datasets, significantly improving over prior editors. Read More  

Daily AI News
AI News & Insights Featured Image

Don’t Let It Hallucinate: Premise Verification via Retrieval-Augmented Logical Reasoning AI updates on arXiv.org

Don’t Let It Hallucinate: Premise Verification via Retrieval-Augmented Logical Reasoningcs.AI updates on arXiv.org arXiv:2504.06438v2 Announce Type: replace-cross
Abstract: Large language models (LLMs) have shown substantial capacity for generating fluent, contextually appropriate responses. However, they can produce hallucinated outputs, especially when a user query includes one or more false premises-claims that contradict established facts. Such premises can mislead LLMs into offering fabricated or misleading details. Existing approaches include pretraining, fine-tuning, and inference-time techniques that often rely on access to logits or address hallucinations after they occur. These methods tend to be computationally expensive, require extensive training data, or lack proactive mechanisms to prevent hallucination before generation, limiting their efficiency in real-time applications. We propose a retrieval-based framework that identifies and addresses false premises before generation. Our method first transforms a user’s query into a logical representation, then applies retrieval-augmented generation (RAG) to assess the validity of each premise using factual sources. Finally, we incorporate the verification results into the LLM’s prompt to maintain factual consistency in the final output. Experiments show that this approach effectively reduces hallucinations, improves factual accuracy, and does not require access to model logits or large-scale fine-tuning.

 arXiv:2504.06438v2 Announce Type: replace-cross
Abstract: Large language models (LLMs) have shown substantial capacity for generating fluent, contextually appropriate responses. However, they can produce hallucinated outputs, especially when a user query includes one or more false premises-claims that contradict established facts. Such premises can mislead LLMs into offering fabricated or misleading details. Existing approaches include pretraining, fine-tuning, and inference-time techniques that often rely on access to logits or address hallucinations after they occur. These methods tend to be computationally expensive, require extensive training data, or lack proactive mechanisms to prevent hallucination before generation, limiting their efficiency in real-time applications. We propose a retrieval-based framework that identifies and addresses false premises before generation. Our method first transforms a user’s query into a logical representation, then applies retrieval-augmented generation (RAG) to assess the validity of each premise using factual sources. Finally, we incorporate the verification results into the LLM’s prompt to maintain factual consistency in the final output. Experiments show that this approach effectively reduces hallucinations, improves factual accuracy, and does not require access to model logits or large-scale fine-tuning. Read More