Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

News
AI News & Insights Featured Image

Surfer 2: The Next Generation of Cross-Platform Computer Use Agents AI updates on arXiv.org

Surfer 2: The Next Generation of Cross-Platform Computer Use Agentscs.AI updates on arXiv.org arXiv:2510.19949v1 Announce Type: new
Abstract: Building agents that generalize across web, desktop, and mobile environments remains an open challenge, as prior systems rely on environment-specific interfaces that limit cross-platform deployment. We introduce Surfer 2, a unified architecture operating purely from visual observations that achieves state-of-the-art performance across all three environments. Surfer 2 integrates hierarchical context management, decoupled planning and execution, and self-verification with adaptive recovery, enabling reliable operation over long task horizons. Our system achieves 97.1% accuracy on WebVoyager, 69.6% on WebArena, 60.1% on OSWorld, and 87.1% on AndroidWorld, outperforming all prior systems without task-specific fine-tuning. With multiple attempts, Surfer 2 exceeds human performance on all benchmarks. These results demonstrate that systematic orchestration amplifies foundation model capabilities and enables general-purpose computer control through visual interaction alone, while calling for a next-generation vision language model to achieve Pareto-optimal cost-efficiency.

 arXiv:2510.19949v1 Announce Type: new
Abstract: Building agents that generalize across web, desktop, and mobile environments remains an open challenge, as prior systems rely on environment-specific interfaces that limit cross-platform deployment. We introduce Surfer 2, a unified architecture operating purely from visual observations that achieves state-of-the-art performance across all three environments. Surfer 2 integrates hierarchical context management, decoupled planning and execution, and self-verification with adaptive recovery, enabling reliable operation over long task horizons. Our system achieves 97.1% accuracy on WebVoyager, 69.6% on WebArena, 60.1% on OSWorld, and 87.1% on AndroidWorld, outperforming all prior systems without task-specific fine-tuning. With multiple attempts, Surfer 2 exceeds human performance on all benchmarks. These results demonstrate that systematic orchestration amplifies foundation model capabilities and enables general-purpose computer control through visual interaction alone, while calling for a next-generation vision language model to achieve Pareto-optimal cost-efficiency. Read More  

News
AI News & Insights Featured Image

A new wave of vehicle insurance fraud fueled by generative AI AI updates on arXiv.org

A new wave of vehicle insurance fraud fueled by generative AIcs.AI updates on arXiv.org arXiv:2510.19957v1 Announce Type: new
Abstract: Generative AI is supercharging insurance fraud by making it easier to falsify accident evidence at scale and in rapid time. Insurance fraud is a pervasive and costly problem, amounting to tens of billions of dollars in losses each year. In the vehicle insurance sector, fraud schemes have traditionally involved staged accidents, exaggerated damage, or forged documents. The rise of generative AI, including deepfake image and video generation, has introduced new methods for committing fraud at scale. Fraudsters can now fabricate highly realistic crash photos, damage evidence, and even fake identities or documents with minimal effort, exploiting AI tools to bolster false insurance claims. Insurers have begun deploying countermeasures such as AI-based deepfake detection software and enhanced verification processes to detect and mitigate these AI-driven scams. However, current mitigation strategies face significant limitations. Detection tools can suffer from false positives and negatives, and sophisticated fraudsters continuously adapt their tactics to evade automated checks. This cat-and-mouse arms race between generative AI and detection technology, combined with resource and cost barriers for insurers, means that combating AI-enabled insurance fraud remains an ongoing challenge. In this white paper, we present UVeye layered solution for vehicle fraud, representing a major leap forward in the ability to detect, mitigate and deter this new wave of fraud.

 arXiv:2510.19957v1 Announce Type: new
Abstract: Generative AI is supercharging insurance fraud by making it easier to falsify accident evidence at scale and in rapid time. Insurance fraud is a pervasive and costly problem, amounting to tens of billions of dollars in losses each year. In the vehicle insurance sector, fraud schemes have traditionally involved staged accidents, exaggerated damage, or forged documents. The rise of generative AI, including deepfake image and video generation, has introduced new methods for committing fraud at scale. Fraudsters can now fabricate highly realistic crash photos, damage evidence, and even fake identities or documents with minimal effort, exploiting AI tools to bolster false insurance claims. Insurers have begun deploying countermeasures such as AI-based deepfake detection software and enhanced verification processes to detect and mitigate these AI-driven scams. However, current mitigation strategies face significant limitations. Detection tools can suffer from false positives and negatives, and sophisticated fraudsters continuously adapt their tactics to evade automated checks. This cat-and-mouse arms race between generative AI and detection technology, combined with resource and cost barriers for insurers, means that combating AI-enabled insurance fraud remains an ongoing challenge. In this white paper, we present UVeye layered solution for vehicle fraud, representing a major leap forward in the ability to detect, mitigate and deter this new wave of fraud. Read More  

News
AI News & Insights Featured Image

Balancing Rewards in Text Summarization: Multi-Objective Reinforcement Learning via HyperVolume Optimizationcs.AI updates on arXiv.org

Balancing Rewards in Text Summarization: Multi-Objective Reinforcement Learning via HyperVolume Optimizationcs.AI updates on arXiv.org arXiv:2510.19325v1 Announce Type: cross
Abstract: Text summarization is a crucial task that requires the simultaneous optimization of multiple objectives, including consistency, coherence, relevance, and fluency, which presents considerable challenges. Although large language models (LLMs) have demonstrated remarkable performance, enhanced by reinforcement learning (RL), few studies have focused on optimizing the multi-objective problem of summarization through RL based on LLMs. In this paper, we introduce hypervolume optimization (HVO), a novel optimization strategy that dynamically adjusts the scores between groups during the reward process in RL by using the hypervolume method. This method guides the model’s optimization to progressively approximate the pareto front, thereby generating balanced summaries across multiple objectives. Experimental results on several representative summarization datasets demonstrate that our method outperforms group relative policy optimization (GRPO) in overall scores and shows more balanced performance across different dimensions. Moreover, a 7B foundation model enhanced by HVO performs comparably to GPT-4 in the summarization task, while maintaining a shorter generation length. Our code is publicly available at https://github.com/ai4business-LiAuto/HVO.git

 arXiv:2510.19325v1 Announce Type: cross
Abstract: Text summarization is a crucial task that requires the simultaneous optimization of multiple objectives, including consistency, coherence, relevance, and fluency, which presents considerable challenges. Although large language models (LLMs) have demonstrated remarkable performance, enhanced by reinforcement learning (RL), few studies have focused on optimizing the multi-objective problem of summarization through RL based on LLMs. In this paper, we introduce hypervolume optimization (HVO), a novel optimization strategy that dynamically adjusts the scores between groups during the reward process in RL by using the hypervolume method. This method guides the model’s optimization to progressively approximate the pareto front, thereby generating balanced summaries across multiple objectives. Experimental results on several representative summarization datasets demonstrate that our method outperforms group relative policy optimization (GRPO) in overall scores and shows more balanced performance across different dimensions. Moreover, a 7B foundation model enhanced by HVO performs comparably to GPT-4 in the summarization task, while maintaining a shorter generation length. Our code is publicly available at https://github.com/ai4business-LiAuto/HVO.git Read More  

News
AI News & Insights Featured Image

Study of Training Dynamics for Memory-Constrained Fine-Tuningcs. AI updates on arXiv.org

Study of Training Dynamics for Memory-Constrained Fine-Tuningcs.AI updates on arXiv.org arXiv:2510.19675v1 Announce Type: cross
Abstract: Memory-efficient training of deep neural networks has become increasingly important as models grow larger while deployment environments impose strict resource constraints. We propose TraDy, a novel transfer learning scheme leveraging two key insights: layer importance for updates is architecture-dependent and determinable a priori, while dynamic stochastic channel selection provides superior gradient approximation compared to static approaches. We introduce a dynamic channel selection approach that stochastically resamples channels between epochs within preselected layers. Extensive experiments demonstrate TraDy achieves state-of-the-art performance across various downstream tasks and architectures while maintaining strict memory constraints, achieving up to 99% activation sparsity, 95% weight derivative sparsity, and 97% reduction in FLOPs for weight derivative computation.

 arXiv:2510.19675v1 Announce Type: cross
Abstract: Memory-efficient training of deep neural networks has become increasingly important as models grow larger while deployment environments impose strict resource constraints. We propose TraDy, a novel transfer learning scheme leveraging two key insights: layer importance for updates is architecture-dependent and determinable a priori, while dynamic stochastic channel selection provides superior gradient approximation compared to static approaches. We introduce a dynamic channel selection approach that stochastically resamples channels between epochs within preselected layers. Extensive experiments demonstrate TraDy achieves state-of-the-art performance across various downstream tasks and architectures while maintaining strict memory constraints, achieving up to 99% activation sparsity, 95% weight derivative sparsity, and 97% reduction in FLOPs for weight derivative computation. Read More  

Daily AI News
AI News & Insights Featured Image

How do AI ‘humanisers’ compare to human editing? AI News

How do AI ‘humanisers’ compare to human editing?AI News The emergence of artificial intelligence has fundamentally altered the field of content creation. Tools capable of generating coherent, often impressive, text, are now ubiquitous. Yet, despite their sophistication, AI-generated content presents a persistent challenge because it often has a “robotic” quality, lacking the warmth, nuance, and genuine voice that connects with a human audience. The
The post How do AI ‘humanisers’ compare to human editing? appeared first on AI News.

 The emergence of artificial intelligence has fundamentally altered the field of content creation. Tools capable of generating coherent, often impressive, text, are now ubiquitous. Yet, despite their sophistication, AI-generated content presents a persistent challenge because it often has a “robotic” quality, lacking the warmth, nuance, and genuine voice that connects with a human audience. The
The post How do AI ‘humanisers’ compare to human editing? appeared first on AI News. Read More  

News
AI News & Insights Featured Image

Multiple Linear Regression Explained Simply (Part 1)Towards Data Science

Multiple Linear Regression Explained Simply (Part 1)Towards Data Science The math behind fitting a plane instead of a line.
The post Multiple Linear Regression Explained Simply (Part 1) appeared first on Towards Data Science.

 The math behind fitting a plane instead of a line.
The post Multiple Linear Regression Explained Simply (Part 1) appeared first on Towards Data Science. Read More  

Daily AI News
OpenAI data residency advances enterprise AI governance AI News

OpenAI data residency advances enterprise AI governance AI News

OpenAI data residency advances enterprise AI governanceAI News For chief data and information officers, especially in tightly regulated sectors, data governance has been a major cause preventing enterprise adoption of AI models. The issue of data sovereignty – which concerns where company data is handled and kept – has held many back, forcing them to use complex private cloud solutions. Others have simply
The post OpenAI data residency advances enterprise AI governance appeared first on AI News.

 For chief data and information officers, especially in tightly regulated sectors, data governance has been a major cause preventing enterprise adoption of AI models. The issue of data sovereignty – which concerns where company data is handled and kept – has held many back, forcing them to use complex private cloud solutions. Others have simply
The post OpenAI data residency advances enterprise AI governance appeared first on AI News. Read More  

News
AI News & Insights Featured Image

Insights into the Unknown: Federated Data Diversity Analysis on Molecular Data AI updates on arXiv.org

Insights into the Unknown: Federated Data Diversity Analysis on Molecular Datacs.AI updates on arXiv.org arXiv:2510.19535v1 Announce Type: cross
Abstract: AI methods are increasingly shaping pharmaceutical drug discovery. However, their translation to industrial applications remains limited due to their reliance on public datasets, lacking scale and diversity of proprietary pharmaceutical data. Federated learning (FL) offers a promising approach to integrate private data into privacy-preserving, collaborative model training across data silos. This federated data access complicates important data-centric tasks such as estimating dataset diversity, performing informed data splits, and understanding the structure of the combined chemical space. To address this gap, we investigate how well federated clustering methods can disentangle and represent distributed molecular data. We benchmark three approaches, Federated kMeans (Fed-kMeans), Federated Principal Component Analysis combined with Fed-kMeans (Fed-PCA+Fed-kMeans), and Federated Locality-Sensitive Hashing (Fed-LSH), against their centralized counterparts on eight diverse molecular datasets. Our evaluation utilizes both, standard mathematical and a chemistry-informed evaluation metrics, SF-ICF, that we introduce in this work. The large-scale benchmarking combined with an in-depth explainability analysis shows the importance of incorporating domain knowledge through chemistry-informed metrics, and on-client explainability analyses for federated diversity analysis on molecular data.

 arXiv:2510.19535v1 Announce Type: cross
Abstract: AI methods are increasingly shaping pharmaceutical drug discovery. However, their translation to industrial applications remains limited due to their reliance on public datasets, lacking scale and diversity of proprietary pharmaceutical data. Federated learning (FL) offers a promising approach to integrate private data into privacy-preserving, collaborative model training across data silos. This federated data access complicates important data-centric tasks such as estimating dataset diversity, performing informed data splits, and understanding the structure of the combined chemical space. To address this gap, we investigate how well federated clustering methods can disentangle and represent distributed molecular data. We benchmark three approaches, Federated kMeans (Fed-kMeans), Federated Principal Component Analysis combined with Fed-kMeans (Fed-PCA+Fed-kMeans), and Federated Locality-Sensitive Hashing (Fed-LSH), against their centralized counterparts on eight diverse molecular datasets. Our evaluation utilizes both, standard mathematical and a chemistry-informed evaluation metrics, SF-ICF, that we introduce in this work. The large-scale benchmarking combined with an in-depth explainability analysis shows the importance of incorporating domain knowledge through chemistry-informed metrics, and on-client explainability analyses for federated diversity analysis on molecular data. Read More  

News
AI News & Insights Featured Image

Style Attack Disguise: When Fonts Become a Camouflage for Adversarial Intent AI updates on arXiv.org

Style Attack Disguise: When Fonts Become a Camouflage for Adversarial Intentcs.AI updates on arXiv.org arXiv:2510.19641v1 Announce Type: cross
Abstract: With social media growth, users employ stylistic fonts and font-like emoji to express individuality, creating visually appealing text that remains human-readable. However, these fonts introduce hidden vulnerabilities in NLP models: while humans easily read stylistic text, models process these characters as distinct tokens, causing interference. We identify this human-model perception gap and propose a style-based attack, Style Attack Disguise (SAD). We design two sizes: light for query efficiency and strong for superior attack performance. Experiments on sentiment classification and machine translation across traditional models, LLMs, and commercial services demonstrate SAD’s strong attack performance. We also show SAD’s potential threats to multimodal tasks including text-to-image and text-to-speech generation.

 arXiv:2510.19641v1 Announce Type: cross
Abstract: With social media growth, users employ stylistic fonts and font-like emoji to express individuality, creating visually appealing text that remains human-readable. However, these fonts introduce hidden vulnerabilities in NLP models: while humans easily read stylistic text, models process these characters as distinct tokens, causing interference. We identify this human-model perception gap and propose a style-based attack, Style Attack Disguise (SAD). We design two sizes: light for query efficiency and strong for superior attack performance. Experiments on sentiment classification and machine translation across traditional models, LLMs, and commercial services demonstrate SAD’s strong attack performance. We also show SAD’s potential threats to multimodal tasks including text-to-image and text-to-speech generation. Read More