Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

Daily AI News
AI News & Insights Featured Image

 arXiv:2505.11924v3 Announce Type: replace-cross
Abstract: Intrinsic self-correction refers to the phenomenon where a language model refines its own outputs purely through prompting, without external feedback or parameter updates. While this approach improves performance across diverse tasks, its mechanism remains unclear. We show that intrinsic self-correction functions by steering hidden representations along interpretable latent directions, as evidenced by both alignment analysis and activation interventions. To achieve this, we analyze intrinsic self-correction via the representation shift induced by prompting. In parallel, we construct interpretable latent directions with contrastive pairs and verify the causal effect of these directions via activation addition. Evaluating six open-source LLMs, our results demonstrate that prompt-induced representation shifts in text detoxification and text toxification consistently align with latent directions constructed from contrastive pairs. In detoxification, the shifts align with the non-toxic direction; in toxification, they align with the toxic direction. These findings suggest that representation steering is the mechanistic driver of intrinsic self-correction. Our analysis highlights that understanding model internals offers a direct route to analyzing the mechanisms of prompt-driven LLM behaviors. Read More  

Author

Tech Jacks Solutions

Leave a comment

Your email address will not be published. Required fields are marked *