Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

Daily AI News
AI News & Insights Featured Image

 arXiv:2602.02351v1 Announce Type: cross
Abstract: Symmetries play a central role in physics, organizing dynamics, constraining interactions, and determining the effective number of physical degrees of freedom. In parallel, modern artificial intelligence methods have demonstrated a remarkable ability to extract low-dimensional structure from high-dimensional data through representation learning. This review examines the interplay between these two perspectives, focusing on the extent to which symmetry-induced constraints can be identified, encoded, or diagnosed using machine learning techniques.
Rather than emphasizing architectures that enforce known symmetries by construction, we concentrate on data-driven approaches and latent representation learning, with particular attention to variational autoencoders. We discuss how symmetries and conservation laws reduce the intrinsic dimensionality of physical datasets, and how this reduction may manifest itself through self-organization of latent spaces in generative models trained to balance reconstruction and compression. We review recent results, including case studies from simple geometric systems and particle physics processes, and analyze the theoretical and practical limitations of inferring symmetry structure without explicit inductive bias. Read More  

Author

Tech Jacks Solutions

Leave a comment

Your email address will not be published. Required fields are marked *