Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

News
AI News & Insights Featured Image

 arXiv:2507.20993v2 Announce Type: replace-cross
Abstract: We study how to learn effective treatment policies from multimodal electronic health records (EHRs) that consist of tabular data and clinical text. These policies can help physicians make better treatment decisions and allocate healthcare resources more efficiently. Causal policy learning methods prioritize patients with the largest expected treatment benefit. Yet, existing estimators assume tabular covariates that satisfy strong causal assumptions, which are typically violated in the multimodal setting. As a result, predictive models of baseline risk are commonly used in practice to guide such decisions, as they extend naturally to multimodal data. However, such risk-based policies are not designed to identify which patients benefit most from treatment. We propose an extension of causal policy learning that uses expert-provided annotations during training to supervise treatment effect estimation, while using only multimodal representations as input during inference. We show that the proposed method achieves strong empirical performance across synthetic, semi-synthetic, and real-world EHR datasets, thereby offering practical insights into applying causal machine learning to realistic clinical data. Read More  

Author

Tech Jacks Solutions

Leave a comment

Your email address will not be published. Required fields are marked *