Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

News
AI News & Insights Featured Image

 arXiv:2510.05526v2 Announce Type: replace-cross
Abstract: Reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO) are important techniques to align large language models (LLM) with human preference. However, the quality of RLHF and DPO training is seriously compromised by textit{textbf{C}orrupted} preference, reward textit{textbf{O}veroptimization}, and bias towards textit{textbf{V}erbosity}. To our knowledge, most existing works tackle only one of these important issues, and the few other works require much computation to estimate multiple reward models and lack theoretical guarantee of generalization ability. In this work, we propose RLHF-textbf{COV} and DPO-textbf{COV} algorithms that can simultaneously mitigate these three issues, in both offline and online settings. This ability is theoretically demonstrated by obtaining length-regularized generalization error rates for our DPO-COV algorithms trained on corrupted data, which match the best-known rates for simpler cases with clean data and without length regularization. Moreover, our DPO-COV algorithm is simple to implement without reward estimation, and is proved to be equivalent to our RLHF-COV algorithm, which directly implies the equivalence between the vanilla RLHF and DPO algorithms. Experiments demonstrate the effectiveness of our DPO-COV algorithms under both offline and online settings. Read More  

Author

Tech Jacks Solutions

Leave a comment

Your email address will not be published. Required fields are marked *