Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

News
AI News & Insights Featured Image

 arXiv:2512.06296v1 Announce Type: new
Abstract: Knowledge graph completion (KGC) aims to predict missing facts from the observed KG. While a number of KGC models have been studied, the evaluation of KGC still remain underexplored. In this paper, we observe that existing metrics overlook two key perspectives for KGC evaluation: (A1) predictive sharpness — the degree of strictness in evaluating an individual prediction, and (A2) popularity-bias robustness — the ability to predict low-popularity entities. Toward reflecting both perspectives, we propose a novel evaluation framework (PROBE), which consists of a rank transformer (RT) estimating the score of each prediction based on a required level of predictive sharpness and a rank aggregator (RA) aggregating all the scores in a popularity-aware manner. Experiments on real-world KGs reveal that existing metrics tend to over- or under-estimate the accuracy of KGC models, whereas PROBE yields a comprehensive understanding of KGC models and reliable evaluation results. Read More  

Author

Tech Jacks Solutions

Leave a comment

Your email address will not be published. Required fields are marked *