arXiv:2512.06240v1 Announce Type: new
Abstract: Money laundering and financial fraud remain major threats to global financial stability, costing trillions annually and challenging regulatory oversight. This paper reviews how artificial intelligence (AI) applications can modernize Anti-Money Laundering (AML) workflows by improving detection accuracy, lowering false-positive rates, and reducing the operational burden of manual investigations, thereby supporting more sustainable development. It further highlights future research directions including federated learning for privacy-preserving collaboration, fairness-aware and interpretable AI, reinforcement learning for adaptive defenses, and human-in-the-loop visualization systems to ensure that next-generation AML architectures remain transparent, accountable, and robust. In the final part, the paper proposes an AI-driven KYC application that integrates graph-based retrieval-augmented generation (RAG Graph) with generative models to enhance efficiency, transparency, and decision support in KYC processes related to money-laundering detection. Experimental results show that the RAG-Graph architecture delivers high faithfulness and strong answer relevancy across diverse evaluation settings, thereby enhancing the efficiency and transparency of KYC CDD/EDD workflows and contributing to more sustainable, resource-optimized compliance practices. Read More