arXiv:2503.18238v3 Announce Type: replace-cross
Abstract: We examined the mechanisms underlying productivity and performance gains from AI agents using a large-scale experiment on Pairit, a platform we developed to study human-AI collaboration. We randomly assigned 2,234 participants to human-human and human-AI teams that produced 11,024 ads for a think tank. We evaluated the ads using independent human ratings and a field experiment on X which garnered ~5M impressions. We found human-AI teams produced 50% more ads per worker and higher text quality, while human-human teams produced higher image quality, suggesting a jagged frontier of AI agent capability. Human-AI teams also produced more homogeneous, or self-similar, outputs. The field experiment revealed higher text quality improved click-through rates and view-through duration, while higher image quality improved cost-per-click rates. We found three mechanisms explained these effects. First, human-AI collaboration was more task-oriented, with 25% more task-oriented messages and 18% fewer interpersonal messages. Second, human-AI collaboration displayed more delegation, as participants delegated 17% more work to AI agents than to human partners and performed 62% fewer direct text edits when working with AI. Third, recognition that the collaborator was an AI moderated these effects as participants who correctly identified they were working with AI were more task-oriented and more likely to delegate work. These mechanisms then explained performance as task-oriented communication improved ad quality, specifically when working with AI, while interpersonal communication reduced ad quality; delegation improved text quality but had no effect on image quality and was positively associated with diversity collapse, creating homogeneous outputs of higher average quality. The results suggest AI agents drive changes in productivity, performance, and output diversity by reshaping teamwork. Read More