Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

News
AI News & Insights Featured Image

 arXiv:2512.03528v1 Announce Type: new
Abstract: Communication is one of the effective means to improve the learning of cooperative policy in multi-agent systems. However, in most real-world scenarios, lossy communication is a prevalent issue. Existing multi-agent reinforcement learning with communication, due to their limited scalability and robustness, struggles to apply to complex and dynamic real-world environments. To address these challenges, we propose a generalized communication-constrained model to uniformly characterize communication conditions across different scenarios. Based on this, we utilize it as a learning prior to distinguish between lossy and lossless messages for specific scenarios. Additionally, we decouple the impact of lossy and lossless messages on distributed decision-making, drawing on a dual mutual information estimatior, and introduce a communication-constrained multi-agent reinforcement learning framework, quantifying the impact of communication messages into the global reward. Finally, we validate the effectiveness of our approach across several communication-constrained benchmarks. Read More  

Author

Tech Jacks Solutions

Leave a comment

Your email address will not be published. Required fields are marked *