Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

News
AI News & Insights Featured Image

 arXiv:2510.12015v1 Announce Type: new
Abstract: Large Language Models (LLMs) have made it possible for recommendation systems to interact with users in open-ended conversational interfaces. In order to personalize LLM responses, it is crucial to elicit user preferences, especially when there is limited user history. One way to get more information is to present clarifying questions to the user. However, generating effective sequential clarifying questions across various domains remains a challenge. To address this, we introduce a novel approach for training LLMs to ask sequential questions that reveal user preferences. Our method follows a two-stage process inspired by diffusion models. Starting from a user profile, the forward process generates clarifying questions to obtain answers and then removes those answers step by step, serving as a way to add “noise” to the user profile. The reverse process involves training a model to “denoise” the user profile by learning to ask effective clarifying questions. Our results show that our method significantly improves the LLM’s proficiency in asking funnel questions and eliciting user preferences effectively. Read More  

Author

Tech Jacks Solutions

Leave a comment

Your email address will not be published. Required fields are marked *