Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

Insights News
Your paragraph text RNd8OP

 Can large language models learn to reason abstractly from just a few examples? In this piece, I explore this question by testing both text-based (o3-mini) and image-capable (gpt-4.1) models on abstract grid transformation tasks. These experiments reveal the extent to which current models rely on pattern matching, procedural heuristics, and symbolic shortcuts rather than robust generalization. Even with multimodal inputs, reasoning often breaks down in the face of subtle abstraction. The results offer a window into the current capabilities and limitations of in-context meta-learning with LLMs.
The post When LLMs Try to Reason: Experiments in Text and Vision-Based Abstraction appeared first on Towards Data Science. Read More 

Author

Tech Jacks Solutions

Leave a comment

Your email address will not be published. Required fields are marked *